Механизмы формирования кальций-зависимой гипертензии на модели кардиомиоцитов крыс в культуре

Е.А. Захаров¹, Н.З. Клюева², Г.Б. Белостоцкая¹

¹ Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН, Санкт-Петербург, Россия ² Институт физиологии им. И.П. Павлова РАН, Санкт-Петербург, Россия

Захаров Е.А. — аспирант Института эволюционной физиологии и биохимии им. И.М. Сеченова РАН; Белостоцкая Г.Б. — к.б.н., старший научный сотрудник, руководитель центра цитоанализа Института эволюционной физиологии и биохимии им. И.М. Сеченова РАН; Клюева Н.З. — старший научный сотрудник Института физиологии им. И.П. Павлова РАН.

Контактная информация: Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН, пр. Тореза, д. 44, Санкт-Петербург, Россия, 194223. Факс: +7 (812) 552–30–12. E-mail: gbelost@mail.ru (Белостоцкая Галина Борисовна).

Резюме

Цель исследования — изучение физиологической активности рианодиновых (PuP) и дигидропиридиновых (ДГПР) рецепторов в кардиомиоцитах спонтанно гипертензивных (SHR) и нормотензивных (WKY, Wistar) крыс от рождения до 6-недельного возраста. Материалы и методы. Активность рецепторов оценивали по скорости нарастания внутриклеточной концентрации Ca²⁺ ([Ca²⁺]_i) в культивируемых (5 дней) кардиомиоцитах: в ответ на действие 4-хлор-м-крезола (4-ХмК) для PuP и Bay K8644 (BayK) — для ДГПР. Результаты. После трехнедельного возраста в миоцитах крыс SHR регистрировалось резкое увеличение скорости нарастания [Ca²⁺]_i (2,9 ± 0,8 раза) в ответ на действие 4-ХмК (2мМ) по сравнению со снижением скорости высвобождения Ca²⁺ через PuP у крыс Wistar и WKY. BayK (80 μ M) также индуцировал более резкое нарастание [Ca²⁺]_i в кардиомиоцитах крыс SHR (3,4 ± 0,3 раза) по сравнению с крысами линий Wistar (2,3 ± 0,2 раза) и WKY (1,2 ± 0,1 раза) того же возраста. Выводы. В кардиомиоцитах крыс SHR и WKY, в отличие от нормотензивных крыс Wistar, наблюдается постепенный рост активности ДГПР, который идет параллельно формированию Ca²⁺-зависимого выброса Ca²⁺ (CICR) (3 недели) и резкое возрастание активности PuP в миоцитах крыс SHR в конце предгипертензионного периода (6 недель).

Ключевые слова: рианодиновые рецепторы, дигидропиридиновые рецепторы, спонтанно гипертензивные крысы, [Ca²⁺], Ca²⁺-зависимый выброс кальция.

Mechanisms of development of Ca²⁺-dependent hypertension in cultured rat cardiomyocytes

E.A. Zakharov¹, N.Z. Klyueva², G.B. Belostotskaya¹

¹Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, St Petersburg, Russia ²Pavlov Institute of Physiology of RAS, St Petersburg, Russia

Corresponding author: Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 44 Torez av., St Petersburg, Russia, 194223. Fax: +7 (812) 552–30–12. E-mail: gbelost@mail.ru (Belostozkaya Galina, PhD, Biology, Senior Researcher, the Head of the Cytoanalysis Centre at Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS).

Abstract

Objective. To study the ryanodine (RyR) and dihydropyridine (DHPR) receptor physiological activity in cardiomyocytes of spontaneously hypertensive (SHR) and normotensive (WKY, Wistar) rats aged 0–6 weeks. **Design and methods**. The receptor activity was estimated by the elevation rate of intracellular Ca²⁺ concentration ([Ca²⁺]_i) in the cardiomyocyte culture (5 days): in response to 4-chloro-m-cresol (4–CmC) action for RyRs and to Bay K8644 (BayK) one — for DHPR. **Results.** In response to 4–CmC (2 mM), a drastic increase in the rate of [Ca²⁺]_i accumulation (2,9 ± 0,8 times) was registered in SHR myocytes cultivated for 3 and more weeks versus a decrease in the rates of Ca²⁺ release via the RyRs of Wistar and WKY rat cardiomyocytes. BayK (80 µM) also induced more sharp [Ca²⁺]_i elevation in SHR cardiomyocytes (3,4 ± 0,3–fold increase) as compared to age-matched Wistar (2,3 ± 0,2–fold increase) and WKY (1,2 ± 0,1–fold increase) ones. **Conclusion.** In SHR and WKY cardiomyocytes, as compared to normotensive Wistar rats, gradual growth of DHPR activity is observed, which follows by Ca²⁺-induced Ca²⁺ release (CICR) (3 weeks) and drastic activation of RyR in SHR myocytes at the end of prehypertensive period (6 weeks).

Key words: ryanodine receptors, dihydropyridine receptor, spontaneously hypertensive rats, $[Ca^{2+}]_i$, Ca^{2+} -induced Ca^{2+} release.

Статья поступила в редакцию: 04.10.09. и принята к печати: 21.10.09.

Введение

Крысы со спонтанной гипертензией (линия SHR) являются общепризнанной экспериментальной моделью гипертонической болезни [1–2]. Известно, что повышенное артериальное давление формируется у них в онтогенезе не сразу, а только через 6 недель после рождения (предгипертензионная стадия). Формирование артериальной гипертензии связано с изменением внутриклеточной концентрации кальция ($[Ca^{2+}]_i$), поэтому исследование нарушений гомеостаза кальция в кардиомиоцитах таких животных [3] позволяет выявить роль различных механизмов, вызывающих эти сдвиги, в формировании устойчивого повышения артериального давления и проясняет роль нарушений клеточного кальциевого метаболизма в патогенезе артериальной гипертензии.

Установлено, что у крыс линии SHR существуют генетически детерминированные нарушения регулирования [Ca²⁺]. вследствие изменений структуры и функции Na⁺, K⁺, Ca²⁺-каналов, Ca²⁺-каналов L-типа, АТФ-запускаемых ионных обменников, Na⁺/K⁺-АТФазы и рианодиновых рецепторов (РиР) [4]. Однако эти изменения проявляются у крыс SHR только после 12-недельного возраста, то есть на поздней стадии гипертензии с признаками явной гипертрофии сердца. Экспериментальные данные, полученные с помощью метода patch $clamp^1$ [5], позволяют связать сердечную гипертрофию у крыс SHR с нарушением взаимодействия между входом Са²⁺ через каналы L-типа и высвобождением Са²⁺ из саркоплазматического ретикулума (СР), приводящим к увеличенным Ca²⁺ спаркам² и усиленному сокращению клеток сердца.

В то же время данных о формировании таких нарушений в раннем онтогенезе у крыс с генетической предрасположенностью к повышению артериального давления практически нет. Процесс Ca^{2+} -зависимого выброса Ca^{2+} (CICR) из CP, связанный с поступлением Ca^{2+} в клетку через дигидропиридиновые рецепторы (ДГПР), формируется в кардиомиоцитах только после рождения. В первые 5 дней жизни в клетках миокарда преобладает вход Ca^{2+} через L-каналы клеточной мембраны, и только в трехнедельном возрасте более важным становится CICR [6–7].

Учитывая то, что CICR является одним из ключевых моментов в сокращении миокарда [8], во многом определяющим его силу, любые отклонения в работе ДГПР и РиР в кардиомиоцитах или нарушения во взаимоотношениях между ними могут оказывать важное, если не определяющее, влияние на величину систолического давления и тонус стенки кровеносных сосудов, то есть служить причиной формирования устойчивого повышения артериального давления.

В связи с этим мы исследовали особенности функционирования рианодиновых и дигидропиридиновых рецепторов в процессе формирования CICR в культуре кардиомиоцитов крыс со спонтанной гипертензией и крыс нормотензивных линий (Wistar и WKY) в ходе постнатального онтогенеза.

Материалы и методы

Исследования проводили на крысах линии SHR от рождения (1-2 сутки) до 35-40 дней постнатального развития и соответствующих им по возрасту нормотензивных крысах линий WKY и Wistar в качестве контроля. Крыс усыпляли с помощью углекислого газа. Отпрепарированные сердца измельчали и инкубировали при 37°С в течение 20-50 мин. (в зависимости от возраста) в растворе Рингера (146 мМ NaCl, 5 мМ KCl, 2 мМ CaCl2, 1 мМ MgCl2, 11 мМ глюкозы, 10 мМ HEPES (pH-7,4)), содержащем коллагеназу IA типа (1 мг/мл, Sigma) и трипсин (0,12 %, Биолот). После фильтрации и центрифугирования клетки переносили в питательную среду (DMEM (Биолот, Россия) с 10 % эмбриональной сывороткой (Биолот, Россия) и антибиотиками (пенициллин 50 ед./мл/стрептомицин 50 мкг/ мл). Немышечные клетки удаляли предварительной инкубацией на стеклянных чашках Петри в течение 45-50 мин. при 37 °C. Затем неприкрепившиеся клетки инкубировали в течение 1 часа при комнатной температуре на полосках покровных стекол (12 × 24 мм), предварительно покрытых поли-Д-лизином (0,1 мг/мл, MP Biomedicals). Дальнейшие эксперименты проводили на свежевыделенных или культивируемых в течение 5 дней кардиомиоцитах. Клетки инкубировали в СО,-инкубаторе (Jouan, France) при 5 % СО,, влажности 95 % и температуре 37 °С. Смену среды производили 2 раза в неделю.

Для измерения $[Ca^{2+}]_i$ клетки нагружали флуорохромом Fura-2AM (10 мкМ, Sigma) в растворе Рингера (1 ч, 26 °C). Регистрацию $[Ca^{2+}]_i$ осуществляли с помощью компьютерной системы анализа внутриклеточного содержания ионов (Intracellular Imaging & Photometry System, USA). Возбуждение образца проводили при 340 и 380 нм, а эмиссию регистрировали при 510 нм. Компьютерная программа InCytIm^{2TM} рассчитывала концентрацию ионов кальция как соотношение интенсивностей флуоресценции (F340/F380) [9] с учетом калибровочной кривой, построенной путем измерения флуоресценции стандартных растворов Ca²⁺.

Активность рианодиновых рецепторов (РиР) оценивали по наличию Ca²⁺ ответов на действие 4-хлор-м-крезола (4–ХмК, 0,25–4,0 мМ). Активность потенциал-зависимых Ca²⁺ каналов L-типа изучали с помощью активатора каналов этого типа, Bay K8644 (BayK, 20–100 мкМ).

Амплитуду Ca²⁺ ответов при действии 4–ХмК определяли на кальциевых кривых в виде отношения максимального значения к исходному уровню Ca²⁺. Скорость повышения [Ca²⁺]_i в ответ на действие 4–ХмК и ВауК вычисляли путем деления величины нарастания [Ca²⁺]_i (нМ) (от начального уровня до максимального значения) на время (в секундах). Скорость нормализации [Ca²⁺]_i после окончания действия агента вычисляли путем деления разницы между [Ca²⁺]_i в момент отмыва препарата и достижением минимальной концентрации Ca²⁺ на время в секундах.

При обработке результатов усредняли данные каждого эксперимента среди находящихся в поле зрения микроскопа клеток, а также данные нескольких повторов и различных экспериментов с одинаковыми условиями проведения. Полученные величины представлены как среднее ± ошибка среднего (M ± m).

¹ patch clamp — метод локальной фиксации потенциала.

² Са²⁺ спарк — активное высвобождение Са²⁺.

Результаты

Поскольку есть данные о повышении уровня внутриклеточного Ca²⁺ в клетках сердечно-сосудистой системы при гипертензии [3, 10-12], мы определяли [Ca²⁺]. в кардиомиоцитах крыс линии SHR в сравнении с нормотензивными крысами линий WKY и Wistar. Эксперименты, проведенные как на свежеизолированных, так и на культивируемых в течение 5 дней миоцитах, не обнаружили статистически достоверных различий в уровнях концентрации Ca²⁺ в кардиомиоцитах крыс всех трех линий. Концентрация [Ca²⁺], в свежевыделенных миоцитах на протяжении первых 5-6 недель жизни крыс находилась в диапазоне 90-110 нМ и снижалась до величины 60-85 нМ после 5 дней поддержания кардиомиоцитов в культуре. При этом активность РиР в кардиомиоцитах крыс всех трех линий к этому времени восстанавливалась до исходного уровня после временной дедифференцировки в первые 4 суток после посева, что определяли по интенсивности Ca²⁺ ответа на действие 4-ХмК. На основании вышеизложенного исследование активности ДГПР и РиР проводили на культивируемых в течение 5 суток кардиомиоцитах. Это повышало стабильность измерений [Са²⁺], по сравнению со свежеизолированными клетками, так как ферментативное разрушение сердечной мышцы повреждает значительную долю клеток, особенно у крыс старшего возраста, вызывая гибель или снижение физиологической активности миоцитов в первые часы после выделения.

Динамика изменения скорости выброса Ca²⁺ в ответ на действие 4–ХмК в культивируемых кардиомиоцитах крыс трех линий на протяжении первых 6 недель жизни отображена на рисунке 1. Видно, что у крыс нормотензивных линий (Wistar и WKY) наблюдается снижение этого показателя по мере взросления животных, в то время как у спонтанно гипертензивных крыс (SHR) в период от 17–19 до 37–40 дня жизни отмечается резкое ускорение нарастания [Ca²⁺]_i (в 2,9 ± 0,8 раза) в ответ на действие 4–ХмК (2 мМ).

Поскольку для поддержания постоянства внутриклеточной концентрации Ca2+ очень важно быстрое восстановление ее исходного уровня, мы оценивали отношение скоростей нарастания [Ca²⁺], к скоростям нормализации [Ca²⁺] при различных концентрациях 4–ХмК (рис. 2). В период формирования CICR не удавалось установить определенной закономерности в динамике этого параметра между линиями крыс (рис. 2 а, б). Однако в кардиомиоцитах 37-40-дневных животных (рис. 2 в) соотношение между скоростями возрастания и восстановления [Са²⁺]. у крыс всех трех линий носит четкий дозозависимый характер. Видно, что у нормотензивных крыс линии WKY наблюдается баланс между выбросом кальция из СР под влиянием 4-ХмК в концентрации 1 мМ и восстановлением исходной концентрации Ca²⁺ (соотношение между этими параметрами менее 1). В кардиомиоцитах другой нормотензивной линии крыс — Wistar — это соотношение было несколько больше 2. В то же время

Рисунок 2. Соотношение скоростей возрастания и восстановления [Ca²⁺], в кардиомиоцитах новорожденных (а), 17–20-дневных (б) и 37–40-дневных (в) крыс линий Wistar, SHR и WKY на 5-й день культивирования в ответ на действие 4-хлор-м-крезола в различных концентрациях

Артериальная гипертензия

у спонтанно гипертензивных животных (SHR) этот показатель увеличивается до 4 и более, что, по всей видимости, свидетельствует о нарушении регуляции уровня внутриклеточного кальция в кардиомиоцитах крыс этой линии в связи с существенным преобладанием выброса кальция, которое проявляется после формирования CICR в электромеханическом сопряжении (ЭМС).

Для оценки функционального состояния потенциалзависимых Ca²⁺ каналов L-типа в кардиомиоцитах крыс в первые недели постнатального развития был использован активатор ДГПР ВауК в различных концентрациях (60–100 мкМ). Для сравнительной оценки действия ВауК на уровень $[Ca^{2+}]_i$ мы остановились на концентрации 80 мкМ, дающей выраженный Ca²⁺ ответ у крыс всех трех линий. На рисунке 3 представлены профили Ca²⁺ кривых при действии ВауК и 4–ХмК на кардиомиоциты крыс различного возраста. Видно, что в отличие от 4–ХмК реакция на ВауК демонстрировала повышение $[Ca^{2+}]_i$ меньшей амплитуды.

По мере взросления животных скорость нарастания [Ca²⁺]_i после действия BayK наблюдается в кардиомиоцитах крыс всех линий (рис. 4). При этом у нормотензивных крыс этот процесс происходит постепенно с практически постоянной скоростью на протяжении 5 с лишним недель, а у крыс линии SHR регистрируется резкий скачок

Рисунок 4. Изменение скорости нарастания [Са²⁺]_і в ответ на действие ВауК в концентрации 80 мкМ в кардиомиоцитах крыс линий Wistar, SHR и WKY различного возраста на 5-й день культивирования

после третьей недели жизни (в 3,4 ± 0,3 раза), в отличие от крыс линий Wistar (в 2,3 ± 0,2 раза) и WKY (в 1,2 ± 0,1 раза) того же возраста. Это согласуется с данными по скорости Ca²⁺-ответа на действие 4–ХмК и отражает возможную связь между событиями, происходящими при активизации РиР и Ca²⁺ каналов наружной мембраны L-типа в кардиомиоцитах крыс линии SHR.

Обсуждение

Формирование гипертензии у крыс SHR происхотид на фоне процесса активного становления взаимоотношений между ДГПР и РиР, которые развиваются в первые 3 недели после рождения [6–7]. К концу этого срока в кардиомиоцитах полностью формируется CICR, который является основным механизмом реализации ЭМС в сердечной мышце взрослых животных [8].

Анализируя полученные результаты с учетом перераспределения ролей между Ca2+ каналами наружной мембраны, которые являются более важными в мышечном сокращении миокарда в первые дни жизни, и РиР, чья роль выходит на первый план к концу трехнедельного периода, надо отметить следующие моменты: 1) различия в активности РиР, обнаруженные с помощью 4-ХмК, начинают проявляться сразу после завершения процесса формирования CICR; 2) повышенная активность РиР у спонтанно гипертензивных крыс SHR четко выявляется к концу 6-й недели жизни животных, то есть к окончанию предгипертензионного периода; 3) более энергичное высвобождение Ca²⁺ из CP в ответ на действие активатора РиР вызывает более длительное, по сравнению с крысами нормотензивных линий, сохранение повышенного уровня Ca²⁺ после действия 4-ХмК; 4) в то же время нам не удалось выявить повышение [Ca²⁺], у крыс SHR в спокойном состоянии в течение предгипертензионного периола.

Учитывая данные о механизме взаимодействия ВауК не только с ДГПР, но и с РиР, полученные в работе [13], наши результаты можно трактовать следующим образом: 1) если повышение [Ca²⁺]_i после действия ВауК связано и с открытием L-каналов, и с передачей сигнала к открытию РиР, то постепенное увеличение скорости нарастания [Ca²⁺]_i в ходе постнатального развития не про-

Том 15, № 6 / 2009 ОРИГИНАЛЬНАЯ СТАТЬЯ

тиворечит этому представлению — на ранних стадиях Са²⁺ поступает в цитозоль через приоткрытые L-каналы, а затем по мере увеличения роли РиР подключается и выброс Ca²⁺ из CP через эти структуры; 2) резкий скачок в скорости нарастания [Ca²⁺]. в ответ на действие BayK в кардиомиоцитах крыс линии SHR после трехнедельного возраста свидетельствует, по-видимому, о том, что активность РиР, а, возможно, и чувствительность ДГПР у спонтанно гипертензивных крыс выше, чем у крыс нормотензивных линий. Это подтверждается данными и других авторов. На крысах SHR в возрасте 4-6 недель было показано, что ВауК вызывает более сильные сокращения изолированных сегментов артерий по сравнению с нормотензивными животными [14], что, по мнению Kubo et al. (1998), может быть обусловлено не изменением функции одиночного Ca²⁺ канала, а связано с повышенной чувствительностью ДГПР к этому агенту.

Таким образом, воздействуя непосредственно на РиР с помощью 4–ХмК и действуя на эти же рецепторы через ДГПР с помощью ВауК, удалось выявить функциональные различия в работе РиР у спонтанно гипертензивных крыс. Повышенная активность РиР, проявляемая в ходе развития ЭМС в кардиомиоцитах крыс линии SHR и четко регистрируемая в конце предгипертензионного периода, может служить основой для формирования стойкой гипертензии у спонтанно гипертензивных животных в старшем возрасте.

Литература

1. Zwadlo C., Borlak J. Disease-associated changes in the expression of ion channels, ion receptors, ion exchangers and Ca²⁺-handling proteins in heart hypertrophy // Toxicol. Appl. Pharmacol. — 2005. — Vol. 207. — P. 244–256.

2. Чурина С.К., Клюева Н.З., Кузнецов С.Р. и др. К патогенезу артериальной гипертензии при дефиците кальция в питьевой воде // Артериальная гипертензия. — 1995. — Т. 1, № Х. — С. 25–30.

3. Kawaguchi H., Sano H., Iizuka K. et al. Phosphatidylinositol metabolism in hypertrophic rat heart // Circ. Res. — 1993. — Vol. 72, № 5. — P. 966–972.

4. Zwadlo C. and Borlak J. Nifedipine represses ion channels, transporters and Ca²⁺-binding proteins in hearts of spontaneously hypertensive rats // Toxicol. Appl. Pharmacol. — 2006. — Vol. 213. — P. 224–234.

5. Shorofsky S.R., Aggarwal R., Corretti M. et al. Cellular mechanisms of altered contractility in the hypertrophied heart. Big hearts, big sparks // Circ. Res. — 1999. — *Vol.* 84. — P. 424–434.

6. Escobar A.L., Ribeiro-Costa R., Villalba-Galea C. et al. Developmental changes of intracellular Ca²⁺-transients in beating rat hearts // Am. J. Physiol. Heart Circ. Physiol. — 2004. — Vol. 286. — P. H971–H978.

7. Perez C.G., Copello J.A., Li Y. et al. Ryanodine receptor function in newborn rat heart // Am. J. Physiol. Heart Circ. Physiol. — 2005. — Vol. 288. — P. H2527–H2540.

8. Bers DM. Excitation-contraction coupling and cardiac contractile force. — 2d ed. — Dordrecht, Boston, London: Kluwer Academic, 2001. — 427 p.

9. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca^{2+} indicators with greatly improved fluorescence properties // J. Biol. Chem. — 1985. — Vol. 260. — P. 3440–3450.

10. Bukoski R.D. Intracellular Ca^{2+} metabolism of isolated resistance arteries and cultured vascular myocytes of spontaneously hypertensive and Wistar- Kyoto normotensive rats // J. Hypertens. — 1990. — Vol. 8, No 1. — P. 37–43.

11. Sugiyama T., Yoshizumi M., Takaku F., Yazaki Y. Abnormal calcium handling in vascular smooth muscle cells of spontaneously hypertensive rats // J. Hypertens. — 1990. — Vol. 8, N 4. — P. 369–375.

12. Bukoski R.D., Lastelic B.A., Xue H. et al. Intracellular Ca2+ and force generation determined in resistance arteries of normotensive and hypertensive rats // J. Hypertens. — 1994. — Vol. 12, № 1. — P. 15–21.

13. Katoh H., Schlotthauer K., Bers D.M. Transmission of information from cardiac dihydropyridine receptor to ryanodine receptor: evidence from BayK 8644 effects on resting Ca(2+) sparks // Circ. Res. — 2000. — Vol. 87, № 2. — P. 106–111.

14. Asano M., Matsuda T., Hayakawa M. et al. Increased resting Ca^{2+} maintains the myogenic tone and activates K+ channels in arteries from young spontaneously hypertensive rats // Eur. J. Pharmacol. — 1993. — Vol. 247, No 3. — P. 295–304.

15. Kubo T., Taguchi K., Ueda M. L-type calcium channels in vascular smooth muscle cells from spontaneously hypertensive rats: effects of calcium agonist and antagonist // Hypertens. Res. — 1998. — Vol. 21, N_{2} 1. — P. 33–37.

Работа поддержана грантом РФФИ 09-04-00954-а.