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Abstract
Recent studies have clearly linked higher serum inorganic phosphate (Pi) concentrations and an imbalance 

of Pi-regulation by kidney-bone-parathyroid endocrine systems to cardiovascular events and mortality.  
This association has been identified in patients with chronic kidney disease, as well as in general 
population. The editorial discusses the available clinical and experimental data linking the pathophysiology 
of phosphate exchange disorders and cardiovascular events.

Key words: inorganic phosphate, chronic kidney disease, cardiovascular diseases, cardiovascular 
risks

For citation: Dobronravov VA. Systemic disorders of inorganic phosphate exchange as a novel cluster of cardiovascular 
risk factors. Arterial Hypertension = Arterial’naya Gipertenziya. 2014;20(6):478–491.



20(6) / 2014 47920(6) / 2014

Редакционная статья / Editorial

нарушения системного обмена 
неорганического фосфата как новый 
кластер кардиоваскулярных рисков

В. А. Добронравов

Государственное бюджетное образовательное 
учреждение высшего профессионального образования 
«Первый Санкт-Петербургский государственный медицин-
ский университет имени академика И. П. Павлова» 
Министерства здравоохранения Российской Федерации, 
Санкт-Петербург, Россия

контактная информация: 
Добронравов Владимир Александрович,
ГБОУ ВПО ПСПбГМУ им. И.П. Пав-
лова Минздрава России, научно-иссле-
довательский институт нефрологии, 
ул. Л. Толстого, д. 17, Санкт-Петербург, 
Россия, 197022.
Тел.: +7(812)234–66–56. 
E-mail: dobronravov@nephrolog.ru

Статья поступила в редакцию 01.11.14 
и принята к печати 10.11.14.

резюме
Исследования последней декады показали отчетливую связь между уровнем неорганиче-

ского фосфата (Pi) сыворотки крови, а также нарушением баланса эндокринных систем почек, 
паращитовидных желез и костей, регулирующих обмен Pi, с сердечно-сосудистыми событиями 
и смертностью. Данные связи продемонстрированы для пациентов с хронической болезнью 
почек и для общей популяции. В передовой статье обсуждаются клинические и эксперимен-
тальные данные, объединяющие патофизиологию нарушений обмена Pi и развитие изменений 
в сердечно-сосудистой системе.

ключевые слова: неорганический фосфат, хроническая болезнь почек, изменения сердечно-
сосудистой системы, сердечно-сосудистые риски

Для цитирования: Добронравов В. А. Нарушения системного обмена неорганического фосфата как новый кластер 
кардиоваскулярных рисков. Артериальная гипертензия. 2014;20(6):478–491.

introduction
Available data provides the evidence of a bidi-

rectional link between renal dysfunction and 
cardiovascular changes. On the one hand, the 
kidneys are the target organ in terms of traditional 
cardiovascular risk factors; on the other hand, the organ 
damage is one of the mechanisms of the development 
and progression of cardiovascular disease (CVD) 
[1–4]. These ideas have been recently implemented in 
clinical practice at the national and international levels, 
and chronic kidney disease (CKD) is recognized as 
an independent risk factor for cardiovascular mortality 
[2, 5]. Mechanisms for accelerated development and 
progression of changes in cardiovascular system are 
determined by a variety of alterations of excretory 

and non-excretory kidney functions leading to the 
occurrence of other (non-traditional) cardiovascular 
risk factors [6].

CKD is a condition associated with the altered 
mineral metabolism involving the retention of inorganic 
phosphate (Pi) as a key factor. Pi is an essential 
component of cell metabolism, and an increase in its 
tissue content has a wide range of negative biological 
effects [7–9]. Experimental and clinical models of 
reduction of glomerular filtration rate (GFR) are widely 
used to study systemic Pi imbalance, because the 
kidney is a major way of Pi elimination. Moreover, the 
kidneys play an important role in paracrine/endocrine 
regulation of Pi metabolism, being the major site 
for production of Pi metabolism regulating factors, 
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cardiovascular risk and other contributing factors.  
In patients without obvious CKD, increased serum Pi 
level, even within the “normal laboratory reference 
range” (< 4,5 mg/dL) was an independent predictor 
of arterial wall thickening and vascular calcification 
[20]. In a prospective study of Coronary Artery 
Risk Development in Young Adults (CARDIA), 
there was a 52 % increase in the risk of coronary 
artery calcification in young patients with serum Pi 
levels more than 3.9 mg/dL after 15 years of follow-
up (compared to 3.3 mg/dL) [22]. The National 
Health and Nutrition Examination Survey showed a 
5-fold increase in risk of peripheral arteries stiffening, 
assessed by shoulder-ankle index, in patients with 
normal renal function and the highest circulating 
Pi level [23]. A recent meta-analysis (24 studies, n 
= 147 634) showed that elevated serum Pi level in 
patients without CKD or a significant decrease in 
GFR is associated with an increase in cardiovascular 
and total mortality [24]. Previously it had been 
demonstrated in patients with overt renal dysfunction 
(47 studies, n = 327 644) [25].

Left ventricular hypertrophy (LVH) is a significant 
and common risk factor for cardiovascular events 
and mortality in patients with and without CKD 
[26–29]. In dialysis patients, high serum Pi is 
associated with LVH [29, 30], and extracorporeal Pi 
elimination leads to its involution [31]. According to 
the recently published papers, there is a potential link 
between higher nutritional consumption of Pi and 
LVH in individuals without renal disease [32].

A number of studies demonstrate the relationship 
between the increase in Pi serum level and nonfatal 
cardiovascular events in individuals with and without 
kidney disease. In patients with predialysis and dialysis 
CKD stages and higher Pi concentrations, the incidence 
of cardiovascular events and hospitalization rate 
are higher. In a large study, involving dialysis 
patients (n > 54000), the risk of cardiovascular 
events increased progressively with the increasing Pi 
level (by 25 % in patients with Pi level within the top 
quintile) [33–35]. Similar connections were found in 
patients with predialysis CKD stages: an increase in 
Pi by 1 mg/dL was associated with the increased 
risk of acute myocardial infarction by 35 % (95 % 
confidence interval 9–66 %), in 3490 patients with 
CKD stages 3–4 (GFR < 45 ml/min), regardless of the 
traditional cardiovascular and renal risk factors [7].

Similar figures were found in patients without 
evident chronic renal dysfunction [36–38]. In the 
Framingham Offspring Study, 3368 participants with 
GFR ≥ 60 ml/min at baseline, with no clinical signs 
of cardiovascular disease were followed-up. Pi level 

i. e. calcitriol and protein α-Klotho (Klotho). The 
organ changes developed at the backgprund of 
Pi imbalancewith or without renal dysfunction are 
phenotypically similar to premature aging, and might 
be considered for modeling, in particular, in studies 
of the effects on cardiovascular system.

Accumulation of Pi can occur even at mild initial 
decline in GFR, especially in case of excessive nutritional 
consumption and its endocrine regulation imbalance. 
Therefore, not only patients with renal diseases, but 
also individuals with initial GFR decline without 
overt signs of renal dysfunction are target population 
regarding this problem [1, 2]. Pi accumulation is 
characterized by long-term subclinical course and is 
not accompanied by an increase in blood Pi level 
until the end-stage renal failure onset. According 
to conventional concept, it due to the adaptation of 
phosphate-regulating systems, enhancement of the 
effects of phosphaturic factors (phosphotonines) on the 
kidneys, and the reduction in the intestinal absorption 
of this anion. In addition, adaptive regulation of the Pi 
balance in reduced urinary excretion is provided by its 
rapid transition from circulation to the bones and soft 
tissues, where it accumulates intracellularly and in the 
matrix. Hyperphosphatemia, on one side, represents 
a threatening reduction of urinary excretion, and on 
the other side, a decline in the Pi “buffer capacity” 
of peripheral tissues, that is usually observed in 
patients with evident vascular calcification and bone 
metabolism disorders.

Phosphate and cardiovascular risk
Increase in serum Pi is associated with clinical and 

subclinical manifestations of cardiovascular disease in 
patients with and without renal pathology: calcification 
of blood vessels and valves, myocardial hypertrophy, 
accelerated atherogenesis, cardiovascular morbidity 
and mortality. Vascular calcification is a very significant 
risk factor for cardiovascular events and mortality in 
patients with and without renal dysfunction [7–15]. 
Among individuals with CKD (non-hemodialysis 
patients), increased arterial stiffness, calcification of 
blood vessels and heart valves are associated with 
higher serum Pi levels [16–20]. In the Multi-Ethnic 
Study of Atherosclerosis, an increase in risk of 
coronary heart disease (CHD) by 21 % (p = 0,002) and 
of valvular calcification by 25–62 % was associated 
with the elevation of Pi concentration by 1 mg/dL in 
patients without clinical manifestations of CVD and 
moderate decrease in GFR [21].

Similar links were found in populations 
without renal disease in a number of large-scale 
studies, which involved the evaluation of the main 
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> 3.5 mg/dl was associated with the increased risk of 
cardiovascular disease by 55 % (compared to Pi level 
< 2.8 mg/dL) [37]. In the Cholesterol and Recurrent 
Events Study (CARE, n = 4159), patients with 
CHD, GFR > 60 mL/min and serum Pi > 4.0 mg/dl 
demonstrated higher risk of myocardial infarction, 
heart failure and death by 50, 43 and 27 %, respectively, 
compared to the patients who Pi within the range 
2.5–3.4 mg/dl [36, 39].

Along with Pi, calcium (Ca) plays a key 
role in vascular calcification, which is based on 
Ca mineral hydroxyapatite. Obviously, a number 
of studies showed a strong relation between 
calcification, cardiovascular dysfunction or mortality, 
on the one hand, and an increase in calcium levels 
(even within the normal range) and calcium-
phosphate product. It was found both in dialysis 
patients [34, 40] and in general population [41]. 
Thus, in a cohort of patients with stable CHD without 
apparent kidney dysfunction increased calcium 
serum level up to the upper quartile was associated 
with the 2.4-fold increase in the relative mortality 
risk [41]. Although data on the possible impact of 
dietary calcium on cardiovascular mortality and 
morbidity are contradictory [42–45], the latest 
meta-analysis including 11 prospective studies 
(n = 757 304), showed that nutritional consumption 
of calcium in doses higher than 1 g/day is associated 
with the increased cardiovascular mortality [46]. 
Its an important counter plea for the widespread 
prescription of calcium supplements and requires 
more careful analysis of the potential risks of their 
widespread use, for example, for osteoporosis 
prevention [47].

Central aspects of the pathophysiology of 
cardiovascular disorders in impaired Pi metabolism: 
paracrine dysregulation

Impaired renal excretion of Pi is not accompanied 
by an increase in its blood concentration. Obviously, 
it results from the adaptive regulation of Pi, and bones 
and soft tissues play a buffering role. Among the latter, 
arterial wall is the most vulnerable part, and clinical 
manifestations of soft tissue calcification are the 
most widespread and severe in arteries. Importantly, 
the processes of calcification can occur at normal Ca 
and Pi plasma levels, remaining till terminal renal 
failure develops. The total pool of Pi increases in 
case of excessive intestinal absorption, renal retention 
or its release from the bones. Abrupt transition of 
Pi from blood to the tissues leads to a consistent 
local increase in its levels in the extra- and intracellular 
space. Na-Pi co-transporters type 3 — Pit-1 and 

Pit-2 — mediate the enhancement of Pi transport into 
cells in case of the expansion of systemic Pi pool. 
Extra- and intracellular increase in Pi concentration 
has potential “toxic” effects on cells and induces a 
number of intracellular signaling pathways leading to 
the formation of vascular calcification. On the other 
hand, Pi accumulation in the extracellular space in the 
presence of Ca stimulates formation of Ca-Pi inorganic 
complexes, which induce adverse cellular effects 
realized through the membrane and intracellular 
mechanisms [48–51]. Stimulation of smooth muscle 
cells (SMC) by Ca-Pi crystals is accompanied by 
an increase in intracellular calcium and leads to 
apoptosis activation. The Ca-Pi compounds are 
supposed to enter into the cell by endocytosis, and then 
they are transported to the lysosomes where in acid 
environment they disintegrate and release Ca ions into 
the cytosol and inducing apoptotic signaling pathways 
[52]. Extracellular Ca-Pi complexes can also affect 
a cell through the formation of Ca-Pi nanoparticles, 
mainly calciprotein particles (CPP) [52, 53]. The latter 
ones are the hydroxyapatite crystals Ca10 (PO4)6 (OH)2, 
connected with proteins (usually, with fetuin-A and 
albumin). CPP formation is a protective mechanism 
that does not prevent the formation of inorganic Ca-Pi 
complexes (hydroxyapatite and intermediate crystalls), 
but leads to the transformation of metastable crystal 
structures into colloid. Its interaction with the plasma 
membrane is much weaker. CPP are believed to induce 
the intracellular cascades by interacting with lipid 
bridges on cell surface [52].

Arterial calcification is the central pathogenetic 
feature associated with the systemic Pi retention and 
an increase in intracellular Ca and Pi. Transdifferentiation 
of SMC into cells with osteochondroblastic phenotypes 
the key process for arterial calcification development. 
It is characterized by the formation of bubbles containing 
hydroxyapatite Ca, fragments of collagen type 1 on 
the cell surface, excessive production of the matrix 
capable for rapid calcification, and impaired formation 
of natural inhibitors of mineralization (pyrophosphate, 
Klotho, fetuin-A, osteocalcin). The main mechanisms 
underlying SMC transdifferentiation include 
modification of the genetic cellular program induced 
by excess extra- and intracellular Pi levels, expression 
of transcription factors and genes typical for 
osteoblast/chondroblast cell lines (Msx1/2, Runx2, 
osterix, alkaline phosphatase, osteoprotegerin), and 
simultaneous reduction in gene expression of smooth 
muscle cell lines (smooth muscle α-actin, SM22α) 
[54–58]. As a result, SMC acquires osteohondroblastic 
phenotype that functionally is characterized by a 
significant increase in PI transport into the cell and its 
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export into the matrix. These phenotypic changes, 
apparently, are necessary for the vascular integrity, 
as the excessive intracellular Ca and Pi levels would 
lead to the massive apoptosis or necrobiosis of SMC. 
AS a retribution, protein and mineral Ca-Pi complexes 
accumulate in the ground substance leading to 
hemodynamic changes and clinical manifestations of 
arterial calcification.

The accumulation of Pi causes not only changes in 
SMC, but also a deeper breakup of vascular wall. 
In terms of basic biology, dysregulation of Pi 
metabolism is an impairment of key processes 
of cell activity induced by intracellular signaling 
pathways activated by an increase in interstitial 
and intracellular Pi levels. Dysregulation of signaling 
pathways of bone morphogenic proteins (BMP) and 
Wnt (Wingless/Integration), which are critical for the 
normal proliferation, plasticity, transdifferentiation 
and differentiation, migration and repair of different 
cell populations, plays the key role in these processes. 
Excessive activation or depression, as well as 
an imbalance in BMP and Wnt-signaling pathways 
play significant role in pathological processes in 
the tissues, first of all, the ones susceptible to Pi 
accumulation in the bones, cardiovascular system and 
kidneys [59–63].

Pi is a potent inducer of the canonical (beta-
catenin dependent) and non-canonical Wnt-signaling 
pathways, as well as of closely associated BMP 
system. At initial stages of activation, BMP- and 
Wnt-signalling pathways are synergistic, as inducers 
of reprogramming of SMC “behavior”, endothelial 
and mesenchymal progenitors due to the activation 
of transcription factors of osteogenic reorganization 
(cyclin D, MSX2, Runx2, AP-1) [61–63]. Calcification 
progression is a result of both the activation of Wnt- 
and BMP systems, and an imbalance between them. 
Sustained activation of BMP-signaling in case of Pi 
retention, decreased production of inhibitors, and 
partial Wnt suppression are the main features of 
the imbalance between the systems. These are due 
to the excessive production of natural inhibitors 
Wnt-, Dkk-1 (dikkorpf-1), sclerostin (SOST), soluble 
forms of Wnt-receptor (Frizzled). Interestingly, 
the increased production of Wnt inhibitors is one of the 
downregulation BMP2 signals, and is a compensating 
mechanism of the Wnt-signaling pathway [64]. Wnt-
inhibitors are formed locally in the endothelium and 
other cell populations: platelets [65], kidney and 
osteocytes at early stages of CKD. This might be one of 
the mechanisms of a systemic Wnt inhibition [66]. The 
stable activity of BMP appears to be the major factor 
for the “forced” osteoblastic differentiation of SMC 

[67]. The simultaneous suppression of Wnt in case 
of Pi retention leads to additional adverse effects on 
cardiovascular cell populations. These include enhanced 
endothelial-mesenchymal transdifferentiation, SMC 
apoptosis, decreased differentiation and survival of 
SMC, endocardial and epicardial mesenchymaltransdi
fferentiation, SMC apoptosis, impaired differentiation 
and integration of myocardial cell populations [60, 
61, 68]. In turn, these phenotypic changes of vascular 
cells may lead to the SMC depopulation, fibroplastic 
changes in arterial wall and endocardium, calcification, 
instability of atherosclerotic plaques, and myocardial 
remodeling. Adverse effects of Wnt inhibition are 
confirmed by experimental and clinical observations. 
Thus, increased level of Wnt inhibitors is associated 
with clinical manifestations of atherosclerosis 
and calcification [69–71], and anti-Wnt-inhibitors 
antibodies prevent arterial calcification when intestinal 
Pi absorption is restricted [72].

systemic changes in endocrine phosphate-
regulating factors and cardiovascular risk

The system of phosphate metabolism and 
pool regulation includes at least three closely 
related endocrine systems of kidneys, parathyroid 
gland and bones, and parathyroid hormone (PTH), 
FGF23/klotho and calcitriol are the main “players” 
(Fig. 1) [73]. CKD and persistent positive Pi balance 
lead to regular changes in the main phosphate-
regulating systems: reduced production of calcitriol 
and α-Klotho in renal tubular epithelium, increased 
PTH secretion by parathyroid glands and enhanced 
production of FGF23 by osteocytes. In turn, changes 
associated with imbalanced endocrine Pi-regulating 
systems involved in the control of Pi metabolism, 
can lead to direct and/or indirect cardiovascular 
effects. These effects are discussed below, and are 
summarized in Figure 2.

Calcitriol
Vitamin D receptor-mediated (VDR) pleiotropic 

effects of calcitriol on cardiovascular system has been 
described elsewhere, and the decrease in vitamin D 
level in CKD is one of the key factors of accelerated 
progression of cardiovascular diseases [74–77]. VDR 
gene knockout, reduction or blockade of calcitriol 
synthesis results in hypertension and myocardial 
hypertrophy [77], and increased systemic renin 
activity and elevated angiotensin II level [78]. High 
doses of VDR-activators stimulate matrix calcification 
and low doses lead to its reduction. This is due 
to the VDR-mediated activation of Runx2 and 
osteocalcin gene expression, which determine SMC 
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note: Pluse marks activating effect, minus shows inhibiting effect. According to the novel concepts, there are three 
major Pi regulating endocrine factors (“classic”) produced in the kidneys, bones and parathyroid glands (PTG): calcitriol, 
fibroblast growth factor 23 (FGF23) and parathyroid hormone (PTH), respectively. Their interaction include positive and 
negative feedback. Pi retention reduces anabolism and catabolism of calcitriol in renal tubular epithelium, and PTH and 
FGF23 stimulation. Calcitriol (synonyms: vitamin D, D-hormone dihydroxycalciferol) is produced in tubular epithelium, 
its interaction with VDR (receptor Vitamin D — Vitamin D Receptor) leads to an increased expression of sodium phosphate 
co-transporter genes (NPT2a in the kidney and NPT2b in the intestine) and stimulates renal and intestinal absorption of 
Pi; in parathyroid glands, it negatively regulates gene expression of PTH and calcium-sensitive receptor (CaSR); calcitriol 
upregulates the expression of the Klotho gene. PTH is a phosphotonine, which inhibits Pi reabsorption by the kidneys 
due to the NPT2a internalization in the epithelial cells of proximal tubule; It stimulates calcitriol production and Klotho 
in the kidney and of FGF23 — in osteocytes. FGF23 is synthesized by bone cells and stimulates phosphaturia, regulates 
the expression of the sodium-phosphate transporter (NPT2a, NPT2c) in the proximal nephron; modulates the activity of 
enzymes Cyp24a1 and Cyp27b1, leading to the increased catabolism and reduced anabolism of calcitriol, a lower genomic 
control of PTH synthesis and a decreased intestinal Pi absorption. Co-expression of FGF receptor (FGFR) and co-receptor 
of transmembrane protein Klotho on the cell membrane mark target organs of FGF23. The last one binds to FGFR and to a 
C-terminal portion of FGF23 leading to the conversion of the canonical FGFR into specific high affinity receptors.

Figure 1. A simple diagram of the feedback interaction 
of three major endocrine systems regulating phosphate metabolism [73]

transdifferentiation into osteochondroblastic cell lines 
[79, 80]. Numerous clinical studies have shown a 
link between decreased level of 25 (OH)D3-calcitriol 
precursor- and cardiovascular changes: hypertension, 
myocardial function, cardiovascular morbidity and 
mortality in patients without renal disease [81–86].

Downward regulated activation of genes involved in 
cellular processes plays the key role in cellular and 
molecular mechanisms of the favorable cardiovascular 
effects. These effects are related to the negative calcitriol-
mediated regulation of renin-angiotensin-aldosterone 
system and the improvement of endothelial function, 
decreased expression of NF-kB, oxidative stress, 
inflammation, and increased NO production [87].

Parathyroid hormone
PTH is supposed to play role in the pathophysiology 

of cardiovascular disease, as its receptors are present in 
SMC, endothelium, and cardiomyocytes [88]. 
Although possible molecular mechanisms remain 
unstudied, they are believed to be associated with the 
activation of intracellular signaling pathways (cyclic 
adenosine monophosphate, AMP; phospholipases, 
protein kinases A and C, ERK — extracellular 

signal-regulated kinase; an increase in intracellular 
Ca level), that are involved in the development 
of cardiomyocyte hypertrophy, hypertension, 
atherosclerosis and vascular calcification [89]. This 
link is highly probable, as patients with primary 
and secondary hyperparathyroidism show similar 
phenotype of cardiovascular disorders — vascular 
and valvular calcification, endothelial dysfunction 
and increased cardiovascular morbidity and mortality 
[90, 91]. It is noteworthy that the risk persists in people 
with increased PTH within the normal range but 
without hyperparathyroidism, and regardless of renal 
function [92, 93]. Recent studies have demonstrated 
arterial calcification and rigidity reduction, after 
secondary hyperparathyroidism was eliminated by 
allosteric activation of the calcium-sensing receptor 
(CaSR) in dialysis patients [94]. However, it can 
be assumed that the relationship between PTH and 
cardiovascular changes are largely mediated by 
other factors that both regulate PTH production and 
have independent cardiovascular effects. In particular, 
PTH production refers to the tertiary response of the 
phosphate regulatory systems, because it is strictly 
controlled by calcitriol and FGF23/Klotho axis 
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note: Pi — inorganic phosphate; GFR — glomerular filtration rate; SMC — smooth muscle cells; PTG — parathyroid 
gland; pKlotho — Klotho in the parathyroid glands; rKlotho — renal pool of Klotho; vKlotho — vascular pool of Klotho; 
sKlotho — circulating Klotho; Wnt — signaling pathway Wingless/integration; iWnt — endogenous inhibitors of Wnt; 
BMP — bone morphogenetic proteins; FGF23 — fibroblast growth factor 23; FGFR — fibroblast growth factor 23 receptor; 
PTH — parathyroid hormone; 1,25D — calcitriol; SHPT — secondary hyperparathyroidism; EMT — endothelial and 
mesenchymal transdifferentiation; RAS — renin-angiotensin system; Up Arrow — activation/increase; Down Arrow — 
inhibition/reduction.

Figure 2. The relationship and effects of major processes related to paracrine 
and endocrine dysregulation of inorganic phosphate metabolism

(Fig. 1). Furthermore, PTH level increase results from 
the activation of mineralcorticoid receptor, and might 
be a symptom of aldosteronism, that is common in 
CVD, and CKD [95].

FGF23 and Klotho
The marked increase in FGF23 and reduced level 

of its co-receptor Klotho are typical signs of the 
persistent positive Pi balance in patients with renal 
dysfunction. Interestingly, besides GFR decline, 
other predictors of FGF23 increase include traditional 
cardiovascular risk factors, e. g. age, smoking, obesity, 
hypertension, diabetes mellitus, and inflammation 
[96–98]. Clinical observations suggest a link between 
FGF23 blood level and cardiovascular risk in CKD 
[98–102]. The growing body of evidence proves the 
role of FGF23 as a cardiovascular risk factor in general 
population. Recent studies have shown that even a 
moderate increase in FGF23 is associated with the 

major adverse events in patients without significant 
renal dysfunction [103, 104]. Ärnlöv J. et al. showed 
that the increase in FGF23 level may be considered as 
a cardiovascular risk factor in population, independent 
of traditional risk factors and other determinants of 
calcium-phosphate metabolism, myocardial mass 
and arterial wall remodeling in patients without 
significant GFR reduction [104, 105]. Progression of 
myocardial hypertrophy and dysfunction is indicative 
of the increased risk associated with elevated 
FGF23 level [106, 107]. Thus, higher levels of 
FGF23 was independently associated with LVH in 
a large cohort of CKD patients of different race 
[108]. Clinical data suggest a direct link between the 
FGF23 level and left ventricular myocardial mass and 
ejection fraction, independent of the kidney function 
and other indicators of phosphate metabolism [109]. 
LVH progression in patients with stable blood pressure 
directly correlates with the ratio “FGF23/Klotho” [110]. 
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A three-year prospective observational study showed a 
4.5-fold increase in risk of decompensated heart failure 
and/or cardiac death in CKD patients with FGF23 level 
within the third tertile, compared to patients with 
FGF23 values within the first tertile [111].

A number of experimental models helps our 
understanding of the possible mechanisms of cardiac 
effects of FGF23. In a cardiomyocyte cell culture, 
FGF23 leads to typical molecular events inherent in 
the development of cardiac hypertrophy, activation 
of atrial and brain natriuretic peptide synthesis, 
imbalance in α and β myosin heavy chains, possibly, 
as a result of the reactivation of fetal genetic 
programs [108, 112, 113]. In vivo experiments 
demonstrated that myocardial effects of FGF23 are 
mediated by its canonical receptor and activation of 
a calcineurin-NFAT-associated signaling pathway, 
and are independent of the Klotho presence [112]. 
These data suggest that the dramatic increase in 
FGF23 blood level can lead to an imbalance in 
paracrine regulation of myocardium involving other 
FGF (FGF2, FGF16, FGF21). This occurs due to 
competitive binding to canonical FGFR receptors 
type 1, although the details of this interaction are 
unknown [114]. Increase in FGF23 level is strongly 
related to atherosclerotic events occurrence — 
myocardial infarction, amputation, stroke in patients 
with severe renal dysfunction [115, 116]. Few studies 
showed an impairment of endothelial function in 
elderly individuals without CKD with increased 
circulating FGF23 level [121], although its association 
with the development of atherosclerosis and arterial 
calcification is not so obvious in case of unapparent 
renal dysfunction [117–120].

The phenotypes of experimental models of 
knockout or reduced expression of the gene Klotho 
(Klotho — in Greek mythology, Moira, spinning the 
thread of life), are characterized by accelerated aging 
and premature death, and homeostatic changes are 
similar to progressive metabolic Pi disorders in CKD 
patients — hyperphosphatemia, increased FGF23, 
hyperparathyroidism, osteopenia, and vascular 
calcification [122, 123]. Systemic cardiovascular 
effects of the receptor interaction between FGF23 and 
Klotho may be mediated by renin-angiotensin system 
activation due to the reduction in calcitriol synthesis and 
angiotensin-convertase 2 gene suppressing [124].

Osteocytes are the main site of FGF23 production, 
while protein Klotho is synthesized mainly in renal 
tubules, parathyroid gland and choroid plexus [125]. 
At the same time both proteins and matrix ribonucleic 
acid are expressed in arterial wall, and FGF23 has 
been also detected in the myocardium [126, 127]. 

Local reduction in the expression of both proteins 
was observed in progressive renal dysfunction and 
arterial calcification [128, 129]. FGF23 receptors 
type 1 and 3 were also found in the vascular wall 
[126]. Based on these data, a significant role of the 
receptor interaction between FGF23 and Klotho 
for the physiology and pathology of cardiovascular 
system was suggested, although the significance of 
their local expression in cardiovascular system is 
not yet understood. An increased activity of Klotho 
by supplementation or by genetic manipulation 
significantly suppresses vascular calcification in 
experimental CKD models [129]. The coexpression 
of FGF23 and Klotho was predominantly found in 
calcified plaques in coronary arteries [126, 127], 
suggesting a dual role of FGF23 and Klotho in the 
development of vascular calcification. On the one 
hand, their primary deficit (genetic, CKD) promotes 
arterial calcification, on the other hand, the low 
ability of cells in the calcification site to produce 
FGF23 and Klotho might be a contributing factor 
for the progression of existing vascular calcification. 
The circulating form of α-Klotho protein is produced 
by alternative splicing of the α-Klotho transcript or 
by release of the extracellular domain of membrane-
bound α-Klotho [130]. Unlike this one acting as a 
FGF23 co-receptor, the circulating form of α-Klotho 
functions as a hormonal factor and likely plays a 
significant role in the prevention of aging, oxidative 
stress, modulation of ion transport and Wnt-signaling 
[62]. Vascular effects of Klotho include inhibition 
of SMC reprogramming induced by high Pi level 
[128]. Moreover, Klotho is known to be a modulator 
of inflammatory effects [129] in the endothelium and 
GMC [131, 132]. The circulating form of Klotho 
can decrease oxidative processes FoxO through 
activation and increased expression of superoxide 
dismutase [133], and is apparently involved in the 
process of endothelial integration and function [134, 
135]. The interrelation between Klotho and life span 
might be mediated by the inhibition of the signaling 
pathways of insulin/IGF-1 [136], and TGF-β upon 
binding to the type 2 receptor [137]. This might 
have a systemic impact involving the development 
of interstitial fibrosis, vascular and myocardial 
fibroplastic changes. In the myocardium, Klotho is 
expressed only in the sinoatrial node, and is considered 
to be involved in its functional integration [138]. 
Sinoatrial node dysfunction and dysrhythmia might be 
the reason of high incidence of sudden death in Klotho 
animals [138], as well as cause atrial fibrillation in clinics 
[139]. The available experimental data suggest that 
Klotho might significantly weaken the FGF23-induced 
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unfavourable functional vascular effects [140]. 
There is an association between Klotho deficiency 
and hypertension-independent cardiac hypertrophy 
[108], and the severity of coronary artery disease 
[127]. An increase in the systemic or intramyocardial 
production of FGF23 may be a direct mediator of 
this process, since both intramyocardial and systemic 
administration of FGF23 resulted in left ventricular 
hypertrophy development in CKD model. At the same 
time, the blockade of FGFR was associated with the 
reduction of hypertrophy severity without change in 
blood pressure [108]. Klotho was suggested to affect 
directly cardiomyocytes. In particular, this journal issue 
presents an experimental study that demonstrated a 
FGF23-independent link between decrease in renal 
level of Klotho and cardiac hypertrophy progression 
[141]. Klotho-mediated exocytosis of voltage-
dependent cation channels TRPC6 (transient receptor 
potential channel 6) in cardiomyocytes can be one of 
potential mechanisms of this relation [142]. Moreover, 
recently published experimental data suggest a 
complex impact of the imbalance in circulating Klotho 
and FGF23 on myocardial remodeling by inhibiting 
fibroplastic changes and hypertrophy mediated by 
TGF-β1, angiotensin II, and Pi increase [143], and by 
reduction of stress-induced cardiomyocyte apoptosis 
[144]. Hereditary Klotho deficiency may play a 
significant role in aging, including cardiovascular 
changes, mediated by interaction with Wnt [62]. 
In contrast, administration of exogenous Klotho 
blocks these processes in endothelial cells [145] 
and fibroblasts in experimental animals [131, 146]. 
There is a bidirectional regulation between Wnt and 
Klotho: Wnt stimulates the formation of Klotho, while 
Klotho inhibits Wnt, binding to various ligands of the 
signaling pathway [62, 131]. These data suggest that 
Wnt suppression, along with renal dysfunction, is 
an essential factor in reducing vascular Klotho level 
and induction of cell aging within the cardiovascular 
system [147, 148].

Conclusions
Thus, available clinical and experimental 

data indicate that the changes in inorganic Pi 
metabolism are associated with the development and 
progression of cardiovascular changes. The main 
and closely related mechanisms of the unfavourable 
cardiovascular effects of Pi include the intra- and 
extracellular formation of inorganic Pi-containing 
complexes; an imbalance in molecules involved in 
paracrine and endocrine regulation of Pi. Modification 
of phosphate metabolism can be a potential way for 
cardiovascular prevention.
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