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Abstract

Observational results suggest that environment has a great impact on physiology but these phenomena
cannot be explained by genetic mechanisms alone. The epigenetic studies broadens our knowledge about
development and physiology. Currently, the topical issues are transgenerational effects which imply
transmission through generations both genetic and phenotypic adaptive mechanisms. The accumulated
data indicate that the influence of environmental factors (bad habits, stress, excessive or insufficient
nutrition, microbiota and others) at early stages of development can contribute to the epigenetic
transgenerational inheritance of phenotypic variability. Epigenetic processes can alter gene expression,
which in turn can either increase vulnerability or contribute to the development of disease tolerance in
future generations. Epigenetic biomarker signatures can be considered as a future diagnostic tool for
assessing person’s specific susceptibility to disease or exposure to environmental toxicants. The current
review discusses the molecular genetic mechanisms of transgenerational inheritance and the influence
of various risk factors.
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Pe3iome

Pesynbrarhi 60JIBIIOTO KOJIMYECTBA HAOTIOIECHHH TTO3BOJISIOT MPEIIoaraTh, YT0 OKPYKaromas cpeia
OKa3bIBACT BJIMSAHNUEC HAa OPraHu3M 663 BOBJICUCHHUSA TCHCTNUYCCKNX MCXAaHU3MOB. I/I3yquHe POJIN S1IUTC-
HETHUKHU B OCHOBHBIX ITPOLCCCAX pa3BUTUA U (1)I/I3I/IOJ'IOFI/II/I SHAYUTCIIbHO PACHIMPACT HAIIC TIOHUMAHKNE
6I/IOJ'IOFI/II/I opraHusma. B HACTOAIICC BPEM O}lHOI71 N3 aKTYaJIbHBIX TEM JJI U3YUCHUSA BO3MOYKHOCTEN
MPEIOTBPAIIICHUS PA3BUTHS 3a00JICBAHHI SBIISIETCS UCCIICIOBAHUE TPAHCTEHEPAIIMOHHBIX 3PPEKTOB —
Korjaga HE TOJIBKO I'€HETUYCCKUE, HO U @CHOTHHI/I‘IGCKI/IC AJIAIITUBHBIC MCXaHU3MBI IICPCAAIOTCS YCPE3
nokoienusa. HakoruieHHbie JaHHBIC CBUICTCILCTBYIOT O TOM, YTO BJIMSIHUC (baKTOPOB OKPY)KaIOHICﬁ
Cpeanbl (BpeI[HI)IC IMPHUBBIYKH, CTPECC, I/136BITO'-IHO€ WM HEAOCTATOYHOC IMUTAHUEC, KUIIIEYHAass MUKPO-
0uoTa 1 Jpyrue) B epUo paHHETO Pa3BUTHUS MOXKET CIIOCOOCTBOBATh SIUTCHETUYECKOMY TpaHCTeHe-
PAaguOHHOMY HACJICJOBAHHUIO (1)€HOTI/IHI/I‘ICCKOI71 N3MCHYHNBOCTH. SHI/H‘GHGTI/I‘-IGCKI/IG MMpOoUeCChbl MOI'YyT
HU3MCHSATDH SKCIIPECCUTIO I'CHOB, YTO, B CBOIO OUYCPEAb, MOXKCET HUJIN IMOBBICUTH BOCIPUNMYUBOCTL, UJIN
CIOCOOCTBOBATH PA3BUTHIO TOJIEPAHTHOCTH K 3a00JICBAHUSAM B CIICIYIONINX TTOKOJICHHUSIX. DMUTeHETH-
YyecKue OMOMapKepHbIe CUTHATYPbl MOTYT OBITh MCIIOJIb30BaHbl B Oy/1yIlleM B Ka4yeCTBE AMArHOCTHYE-
CKOI'O MHCTPYMCHTA IJis1 OUCHKH HaJIM4us y 4CJIOBCKa CHGHI/I(l)PI‘-IGCKOfI BOCIIPUHUMYHNBOCTHU K 3360.]'16-
BaHUSIM WJIM BO3JIEHCTBUIO TOKCUKAHTOB OKPY’KaroIen cpeabl. B HacTosimem 0630pe 00Cy)aatoTcst
MOJICKYJIAPHO-TCHCTUUCCKHUE MCXaHU3MbI TPAHCTCHCPALIMOHHOT'O HACICAOBAHUA U BJIUAHUC PA3JIMUYHBIX
(hakTopoB puCKa.

KiroueBble ci10Ba: SIUreHETHKA, SITUMYTAIHS, STIUTEHETHYECKOE TPAaHCTEHEPAITMOHHOE HACTIEI0-
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Introduction

Despite the fact that most of the inheritance laws
have already been described, recent studies show
that inheritance of phenotypic traits can also take
place through nongenetic factors. Thus, it can be
through epigenetic mechanisms which can manifest
their effects across generations (transgenerational
inheritance). Epigenetic processes are integral part
of normal biology and are critical for the body to
be able to respond to its environment with chang-
es in gene expression and also allow stem cells to
develop into a differentiated cell type [1].

The influence of environmental factors, such
as toxicants, unhealthy diet or stress, can contrib-
ute to the epigenetic transgenerational inheritance
of phenotypic variability that may promote devel-
opment of diseases [2]. Epigenetic processes are
critical for the body’s response to the environment
by changes in gene expression, which, in turn, can
either increase susceptibility or contribute to the
development of tolerance to diseases in future gen-
erations [3].

Molecular epigenetic mechanisms of trans-
generational inheritance

Epigenetic transgenerational inheritance is the
inheritance of epigenetic information, mediated by
the germ line, between generations in the absence
of constant direct environmental influence lead-
ing to phenotypic variability. There are described
two types of inheritance. Firstly, intergenerational
inheritance, which occurs as a result of direct ex-
posure, when the embryonic cell receives external
signals and transfers them into epigenetic changes.
The persistence of these changes after fertilization
and early development underlies phenotypic or
metabolic variability, causing differentiated risk of
disease development in the offspring compared to
its parents. For example, when a pregnant mother
(F0) is exposed to an adverse environmental factor,
it can affect the offspring (F1) as well as grandchil-
dren (F2) as a result of intrauterine exposure to the
developing embryo (F1) or the developing germ
cell (later F2). On the other hand, a direct impact
on the father’s life (FO) can affect his offspring (F1)
through epigenetic changes in his sperm. Secondly,
transgenerational inheritance is a phenomenon in
which the effects are manifested in the unexposed
generation [4]. Under intrauterine exposure the F3
generation will be the first generation to acquire a
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transgenerational phenotype. Although this mech-
anism is not yet fully described, epigenetic effects,
which are transgenerational, may underlie persistent
and evolutionarily important changes.

Epigenetic molecular processes include DNA
methylation, histone modifications, non-coding
RNA molecules, RNA methylation, and chroma-
tin structure (Fig. 1, [5]). The most studied epi-
genetic factor is DNA methylation. The methyl
group attaches to the cytosine base of DNA [6] to
form 5-methylcytosine. The Tet family of enzymes
(Ten-eleven translocation) can oxidize 5-methyl-
cytosine to 5-hydroxymethylcytosine and other
compounds [7]. Histone proteins that create a nu-
cleosome with DNA can be chemically modified
to alter gene expression. It should be noted that
acetylation of histones can enhance transcription,
while methylation can suppress transcription [8].
Non-coding RNA molecules that act as epigenetic
factors are independent of the DNA sequence. Thus,
most noncoding RNA molecules do not rely on the
presence of a nucleotide sequence complementary
to a specific region of DNA or RNA to function
[9]. Long noncoding RNAs [10] and RNA-derived
short RNAs are present in spermatozoa and can
act as epigenetic factors that influence subsequent
generations. RNA molecules themselves can al-
so be epigenetically modified, which in this way
can affect the translation and expression of genes
[11]. The helical, loop, and general structure of
DNA is also an epigenetic factor [12]. Due to the
three-dimensional structure of DNA some parts of
the genome can become accessible for the transcrip-
tional mechanism, for example, the regions of the
enhancer are close to the gene promoters, which
affect gene expression.

Examples of transgenerational inheritance in-
clude observations made with calorie restriction or
a high-fat diet. The Overkalix study by L.O. Bygren
et al (2014) showed the relationship of cardiovas-
cular mortality with nutrition in childhood and
adolescence. While a grandmother experienced
prolonged nutritional restriction prior to her pu-
berty, her sons’ daughters had an increased risk of
cardiovascular mortality [13]. The study found no
effect of the maternal grandmother’s diet on car-
diovascular risk in grandchildren. Another study
showed that adult grandchildren whose fathers were
starved in the womb had a higher body mass index
than a control population [14]. According to the




Arterial Hypertension / Aprepuansnas ['mneprensus

Figure 1. Epigenetic molecular mechanisms (adapted from [5])
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Figure 2. Epigenetic and genetic cascade of events participating
in stem-cells development (adapted from [18])
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hypothesis of a predictive adaptive response [15],
environmental influences such as starvation can
epigenetically promote the development of an adap-
tive (lean) phenotype in subsequent generations.
If the living environment of the offspring contains
enough nutrients, it contributes to the development
of diabetes, cardiovascular disease and obesity.
Environmental exposure can disrupt the nor-
mal molecular epigenetic mechanism and lead to
stochastic and / or directional epigenetic changes,
epimutations. Epimutation is the environmentally
induced differential presence of epigenetic changes
that can lead to a change in genome activity when
compared to unaffected organisms. If they occur
in the germ line, it can lead to the transgeneration-
al inheritance of a wider range of phenotypes in
the offspring, including those that can contribute
to the development of diseases. This explains the
increased susceptibility to diseases of organisms
whose ancestors were exposed to adverse environ-
mental influences. On the other hand, phenotypic

variability can also lead to better adaptation to a
changed environment, which promotes natural se-
lection and evolution [16].

There are primary epimutations — epigenetic
changes in the absence of genetic changes; and
secondary epimutations — changes that form af-
ter the initial genetic change. J. R. McCarrey and
M. K. Skinner (2016) put forward the idea of ter-
tiary epimutations, which are initial primary epi-
mutations that contribute to genome instability,
leading to an accelerated accumulation of genetic
mutations [17]. However, it remains unclear why
some primary epimutations are only temporary
(leading to generational effects) and why in oth-
er cases the initial effects can turn into tertiary
epimutation (or can cause it), inducing persistent
transgenerational phenotypes.

Transgenerational inheritance of environmen-
tally induced epigenetic changes requires germline
transmission from parents to future generations.
However, epigenetic changes appear as changes
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in gene expression, and do not cause the develop-
ment of diseases. Oncological diseases, pathology
of the prostate gland or kidneys, as well as obesity
are caused by disturbances in gene expression in
the corresponding somatic cells. The hypothesis
is that epimutations in the germ line change the
epigenome of embryonic stem cells, which affect
all subsequent epigenomes and transcriptomes of
somatic cells (Fig. 2 [18]) [19]. These cellular and
tissue-specific epimutations contribute to tissue-spe-
cific changes in transcriptomes that can contribute
to the development of disease.

A. Soubry et al (2014) suggested the existence
of epigenetic windows of susceptibility to envi-
ronmental influences during sperm development
[20]. Sperm are at a higher risk of epigenetic dam-
age during periods of epigenetic reprogramming,
and environmental factors can alter this process. It
can be assumed that these changes are likely to be
passed on to the next generation (s). Although most
of the evidence is based on animal models, some
studies show that sperm in men of general human
population are susceptible to unhealthy lifestyles or
obesity [21] and exposure to pollutants such as or-
ganophosphates [22]. The same researchers demon-
strated that epigenetic signatures can be passed from
father to child [23]. Some intergenerational effects
of early exposure have been found in humans in
long-term studies. For example, K. Northstone and
co-authors (2014) in their study showed that those
men whose fathers started smoking at an early age
were prone to obesity [24]. It should be noted that
the exposure to phthalates in men was associated
with poor blastocyst quality in couples attending
a fertility clinic [25]. This led to the emergence of
a new paradigm of Paternal Origins of Health and
Disease (POHaD) [26].

Transgenerational Effects of Various Risk
Factors Influence

Stress

Offspring born to mothers who have expe-
rienced at least one major stressful / traumatic
life event during pregnancy have lower serotonin
transporter messenger RNA levels compared to
infants without prenatal maternal stress. It is worth
noting that the authors found a negative relation-
ship between the number of prenatal stressors /
traumas in maternal life and SLC 6A4 messenger
RNA [27].
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There is a classic example of the stressful im-
pact of severe food shortages, the Dutch famine of
194445, known in the Netherlands as the Honger-
winter, its literal translation is hunger winter (No-
vember 1944 — April 1945). The Dutch famine
studies have observed different effects of maternal
and paternal PTSD on both glucocorticoid receptor
sensitivity and vulnerability to psychiatric disor-
ders [28]. The observed changes in sensitivity to
glucocorticoid receptors in offspring may be due to
changes in parental sex methylation in the NR3C 1
gene encoding the glucocorticoid receptor. Indeed,
in the offspring of men who survived the Holocaust,
a higher methylation of the NR3C 1 promoter was
noted, while in offspring having post-traumatic
stress disorder occurred in both the paternal and
maternal lines, a lower methylation of NR3C 1
was revealed [29].

R. Yehuda, et al (2016) studied transgeneration-
al methylation changes on FKBPS5, a moderator of
glucocorticoid activity, in Holocaust survivors [30].
FKBPS intron 7 methylation levels were signifi-
cantly higher in Holocaust survivors than in their
offspring. The authors suggested that this opposite
effect, observed at the levels of methylation of in-
tron 7 of FKBPS5, may be associated with biolog-
ical accommodation in the offspring. Among the
limitations of this study are the small size of the
sample, as well as the presence of other factors
that cannot be controlled, such as extreme condi-
tions during the Holocaust, which may have also
contributed to the observed effect. Descendants of
Holocaust survivors have a higher risk of anxiety,
depression, PTSD and cardiovascular events com-
pared to non-Holocaust Jewish populations [31].

Malnutrition

Malnutrition or starvation during pregnancy and
early life is one of the most important factors for
the development of distant cardiometabolic disor-
ders in adulthood. The most valuable information
about the effects of nutrition during pregnancy on
the health of children and adults in the long term
can be obtained by studying the incidence among
cohorts of people born during periods of natural
disasters and wars, when entire cities, localities,
regions, and even countries were exposed to star-
vation. Jie Li et al (2015) investigated the effect
of prenatal exposure to starvation in 1959-1961 in
China on the cognitive function of adults in two
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successive generations. The findings suggest that
prenatal exposure to severe malnutrition is nega-
tively associated with visual-motor skills, mental
flexibility, and selective attention in adulthood.
However, these associations are limited to only
one generation [32].

Another example is the study of children whose
grandmothers fasted during Ramadan during preg-
nancy [33]. In this study, the grandchildren of these
women were noted to have a lower body weight at
birth and a lower weight of the placenta was record-
ed, which increases the likelihood of developing
metabolic effects later in life.

In the previously mentioned Dutch cohort, when
studying the influence of perinatal starvation, no
differences were found in the prevalence of cardio-
vascular diseases, high cholesterol levels, diabetes
and hypertension between the offspring of men and
women. But prenatal exposure to starvation in men
has been associated with an increase in body mass
index in their offspring [34]. In the same group, the
length of leukocyte telomeres and the prevalence of
short telomeres did not differ between those who
underwent intrauterine fasting and did not under-
go fasting in early pregnancy. Prenatal exposure to
starvation was not associated with telomere short-
ening in peripheral blood leukocytes at age 68.

A study of seasonal dietary fluctuations in the
Gambia [35] showed different levels of DNA meth-
ylation in offspring whose mothers were malnour-
ished during pregnancy compared with respondents
who did not experience maternal malnutrition in
utero.

The siege of Leningrad became another trag-
ic example of the catastrophic malnutrition of the
inhabitants of the city, which was in the absence
of supplies for two and a half years during the
Great Patriotic War (September 1941 — January
1943). When Professor B. M. Rachkov examined
the descendants of the besieged Leningrad citizens,
diseases of the musculoskeletal system were most
often recorded, followed by symptoms of diseases
of the cardiovascular system, followed by various
diseases of the gastrointestinal tract and respira-
tory organs [36].

Another historical example of this kind was the
brutal communist regime in Romania. After the end
of World War II, Romania was under Soviet occu-
pation and the country’s resources were depleted. In
addition, in 19461947, there was a severe drought,

which led to severe famine in some parts of Ro-
mania. All babies born during such difficult times
have health problems later in adulthood. According
to the European Obesity Day (EOD), among re-
spondents aged 65 to 74 (Romanians born between
1940 and 1949), the proportion of obese people was
71.2% in 2014, the highest in terms of compared
to any other age group in Romania [37]. Another
conclusion can be drawn regarding the age group
18 years and older — these are the grandchildren
of those who were born in 1946—-1947. One of the
clinical trials published by S. Popa et al. (2016) (—
the PREDATORR study) — showed a high prev-
alence of obesity / overweight, abdominal obesity
and metabolic syndrome among the Romanian
adult population. It should be noted the relatively
high prevalence of obesity (20.9 %) and metabolic
syndrome (20 %) in the age group 2039 years old
[38]. It is worth noting that over the past 30 years,
the total calorie intake in the Romanian population
has exceeded the level recommended by the Food
and Agriculture Organization (FAO), corresponding
to 2,700 calories per day in a temperate climate.
The amount of food purchased by Romanians that
predispose to the development of diabetes melli-
tus, fatty liver disease associated with metabolic
dysfunction, cardiovascular diseases purchased by
Romanians is excessive; this behavior can also be
explained by the transgenerational effect of food
deprivation in previous periods [39].

Caffeine

Although caffeine is present in coffee, tea, and
chocolate, it is also increasingly being added to a
variety of foods and beverages, raising both interest
and concern about the potential health effects of
caffeine in future generations [40]. Many pregnant
women around the world consume caffeinated bev-
erages, which can have adverse effects on the fetus,
although research results are conflicting. M. C. Cor-
nelis et al (2016) conducted a genome-wide asso-
ciative study of caffeine metabolites and identified
genes encoding proteins with important clinical
functions beyond the caffeine metabolism [41].

In a population cohort of 7857 mothers and their
children, maternal caffeine intake during pregnan-
cy was assessed using questionnaires. According
to E. Voerman et al (2016), children whose moth-
ers consumed 6 or more units of caffeine per day
tended to have lower birth weight, higher weight
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gain from birth to 6 years, and higher body mass
index from 6 months to 6 years. In addition, they
had higher total childhood fat mass at age 6. The
authors did not observe differences in insulin or
C-peptide levels, but this may be due to the limited
fasting period before blood sampling [42].

E. Papadopoulou et al (2018) conducted a study
within the framework of the Norwegian Maternal
and Child Cohort Study (MoBa) [43] — a pro-
spective population-based cohort study of pregnant
women conducted by the Norwegian Institute of
Public Health [43]. A total of 50,943 mothers and
their babies born after singleton pregnancies took
part in the study. The mothers were provided with
information on the average caffeine intake estimated
mid-pregnancy. The authors found that any mater-
nal caffeine intake during pregnancy was associat-
ed with a higher risk of overgrowth in infancy and
overweight in early childhood. Maternal intake of
caffeine above 360 mg / day was associated with
higher birth weight to 6 years of age compared to
intake below 180 mg / day, but the authors found
no association with overweight. Higher caffeine
intake (360-540 mg / day) during pregnancy was
positively associated with body fat percentage and
higher insulin levels in 6-year-old children [44].
Liet al (2015) reported that any maternal caffeine
intake was associated with an overall increased
risk of obesity between the ages of 2 and 15 years
[45]. Combining previous results from the MoBa
study, the authors showed that children who were
prenatally exposed to high levels of caffeine were
smaller at birth, grew faster in infancy, and main-
tained a higher body weight throughout childhood
without significant differences in height, leading to
obesity. [44]. These data are consistent with the fetal
obesity programming hypothesis [46]. However,
the effect of prenatal caffeine exposure on postnatal
growth and overweight development was independ-
ent of birth weight. Therefore, along with healthy
birth weight, it is important to identify modifiable
factors (for example, prenatal: excess gestational
weight [47], high (> 3 times per week) fish intake
and postnatal factors: feeding formula and feeding
schedule), which can independently affect excess
growth in infancy, regardless of fetal growth.

Obesity
Higher maternal mass index at the beginning of

pregnancy and higher gestational weight gain were
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associated with subsequent obesity in the offspring
[48]. Some, although not all [49] studies before
and after bariatric surgery show that in cases of
extreme maternal obesity, these associations may
be caused by intrauterine mechanisms. Taken to-
gether, these results suggest that exposure to both
undernutrition and overnutrition in utero may lead
to more pronounced obesity later in life.

The Avon Longitudinal Study of Parents and
Children (ALSPAC) is a population-wide cohort
pregnancy study that enrolled 14,541 pregnant
women with a due date between April 1991 and
December 1992 [50]. This study identified several
CpG sites that are differentially methylated in the
umbilical cord blood of the offspring of obese or
underweight mothers compared to the offspring
of normal weight mothers, without overlapping
sites associated with maternal obesity and under-
weight. When assessing epigenetic changes in the
offspring of women with underweight and normal
body weight, much more differentially methylated
regions were revealed (1621) than when compar-
ing the offspring of obese women and ones with
normal body weight, which suggests that maternal
weight deficit has a greater effect on the epige-
nome of fetus than maternal obesity. The effect of
maternal obesity was stronger than that of pater-
nal obesity, which confirms the underlying intra-
uterine mechanism. There was also no consistent
association of weight gain during pregnancy with
DNA methylation.

A general trend shows that areas hypermeth-
ylated due to maternal obesity or hypomethylated
due to maternal underweight tend to be positively
associated with offspring obesity, and areas hypo-
methylated due to maternal obesity or hypermeth-
ylated in associations with maternal underweight
are generally inversely associated with obesity in
the offspring. This suggests that a linear association
(as shown in ALSPAC) between maternal obesity
and offspring obesity may be mediated through
DNA methylation in the offspring at birth [51].

F. Guénard et al (2013) found 5698 differen-
tially methylated CpG sites in the peripheral blood
of children born to morbid obese mothers before
bariatric surgery, compared with their siblings born
after bariatric surgery on the mother and associated
weight loss [52]. Other studies have found little or
no association between maternal body mass index
and offspring DNA methylation [53]. Only two
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studies have examined the relationship between
DNA methylation at birth and obesity in later child-
hood. Both studies used an approach to candidate
genes, and each identified a separate associated
locus [54, 55].

At the present time, there have been developed
no recommendations for a healthy lifestyle for fu-
ture fathers. However, this may well need to be cor-
rected, given that obesity can act as a factor contrib-
uting to the development of diseases in offspring.
A meta-analysis published by J.M. Campbell et al
(2015) included 30 studies and about 115,000 par-
ticipants. In obese men, infertility and an increased
percentage of spermatozoa with low mitochondrial
membrane potential, DNA fragmentation, and ab-
normal morphology were more often observed [56].

However, when studying DNA methylation at
the individual gene level or in genome-wide studies,
differential methylation was established according
to the status of obesity. For example, in the sperm
of 69 young and healthy volunteers, the percentage
of DNA methylation in differentially methylated
regions of imprinted genes differs significantly in
obese or overweight men compared to men with
normal body weight [57].

Gut microbiota

In the early postnatal period, the intestines of
humans are colonized by symbiotic bacteria, the
intestinal microbiota is unstable during the first days
of life, and by the age of 3 it acquires an adult-like
complexity. Consistent with Barker’s hypothesis,
one would expect adult metabolic diseases to re-
sult from several genes being turned off or on to
optimize perinatal and early adult life. Interesting-
ly, the period of life during which epigenetic DNA
imprinting is most active coincides with this early
three-year period [58].

C.A. Devaux et al (2018) suggested that the
microenvironment of the cell (bacterial surface an-
tigens and secreted proteins, low molecular weight
compounds of bacteria and biologically active mol-
ecules supplied with food and processed by the
intestinal microbiota) remains constant from one
generation to the next, highlighting a new term —
“microbiological memory”. Microbiological mem-
ory remains stable when diet and microbiota are
nearly unchanged. According to this theory, what
is currently known as epigenetic programming is
likely nothing more than a nongenetic hereditary

signature resulting from molecular cross-interac-
tions between gut prokaryotes (microbiota metabo-
lome) and eukaryotic cells. It can trigger continuous
changes in cellular genes through the activation of
signaling pathways in host cells, thereby controlling
the epigenetic signature [59].

The hypothesis of “intrauterine colonization”
indicates that the microbiota of offspring lives in
the intrauterine environment (in the placenta, am-
niotic fluid, umbilical cord blood and meconium)
before birth and is maternally transferred [60]. It
is likely that microbial colonization begins in the
amniotic fluid and placenta and that maternal gut
microbiota supports the development of prena-
tal microbiota, but the exact route of transference
remains unclear to date [61]. The postnatal stage
during lactation, which depends on the types of
contact with the mother, the maternal diet, and
breastfeeding / infant formula, is also of great im-
portance for establishing the composition of the
intestinal microbiota [62]. It is generally accepted
that the microbiota of the offspring is of great im-
portance for the establishment and development of
the immune, metabolic function and further health
of the offspring [63, 64].

Smoking

The mechanisms underlying the different health
effects of smoking on the health of adults and in-
fants whose mothers smoked during pregnancy re-
main largely unknown. In a large-scale meta-anal-
ysis of the relationship between current smoking
and DNA methylation in the blood of adults in the
Cobhorts for Heart and Aging Research in Genomic
Epidemiology (CHARGE) consortium, the authors
identified numerous differentially methylated cy-
tosine phosphate guanine sites [65].

According to a meta-analysis of studies from
the Pregnancy And Childhood Epigenetics (PACE)
consortium, widespread differential methylation
across the entire genome associated with prolonged
maternal smoking during pregnancy was revealed in
newborns. However, it should be noted that statis-
tically significant changes in methylation between
exposed and non-exposed groups (both neonates
and adults) are small [66].

It is also worth noting that many DNA meth-
ylation associations related to long-term personal
smoking in adults can also be seen in newborns
who have been exposed to tobacco smoke in ute-
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ro, although their mothers have smoked far fewer
cigarettes. S. Sikdar et al (2019) identified differ-
entially methylated CpGs associated with smoking
in a meta-analysis of data from the existing PACE
and CHARGE consortia [67].

Conclusion

The evolutionary aspects of developing epige-
netic transgenerational inheritance of disease are
still unclear. It is necessary to consider the potential
role of these hereditary influences and epigenetic
transgenerational inheritance in the etiology of dis-
eases. In addition, from a clinical point of view, the
relationship of epimutation patterns or signatures
with a specific disease and / or hereditary effect on
human is of interest. Epigenetic biomarker signa-
tures can be used in the future as a diagnostic tool
for assessing a person’s specific susceptibility to
diseases or exposure to environmental toxicants.
This can contribute to the development of person-
alized medicine and new approaches to prevent-
ing the negative influence of risk factors across
generations.
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