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Abstract
Article presents the latest data on the role of the immune, endocrine and sympathetic nervous system 

in the pathogenesis of hypertension. The authors pay attention to the interaction of regulatory systems 
in the mechanisms of disease development and stabilization.
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Резюме
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Hypertension (HTN) is one of the most 
common diseases in the world [1]. Numerous 
studies indicate the need for early detection of the 
disease and its timely correction [2–4] to prevent 
adverse cardiovascular events [1, 5–7]. Modern 
pharmacological progress allows achieving 
satisfactory blood pressure level (BP) in most cases. 
On the other hand, cardiovascular diseases still bear 
the palm in the causes of morbidity and mortality 
worldwide [7, 8]. Present problem requires new 
scientific research in understanding of disease 
pathogenesis and to develop new treatment options. 
Most modern publications on HTN are focused 
on sympathetic nervous system (SNS) activation. 
Its effect is due to the action of neurotransmitters 
(epinephrine and norepinephrine) on adrenergic 
receptors in vascular wall and is accompanied 
by vascular wall smooth muscle cells (SMC) tone 
up followed by elevated BP [13]. This leads to 
blood supply deterioration of nephron glomerulus, 
juxtaglomerular apparatus activation and renin-
angiotensin-aldosterone system (RAAS) activation. 
The latter enhances and prolongs the catecholamine 
effect on the arterial wall greatly toning it up [9–11]. 
However, the data are not sufficient for learning the 
genesis of essential hypertension. All data should 
be summarized in one system to understand the 
mechanisms of HTN. Integration is about joint 
research of the role of the immune, endocrine 
and nervous systems in HTN pathogenesis. Thus, 
immune system is actively involved (inherent 
and acquired immunity) in HTN stabilizing 
mechanisms, according to modern concepts 
[12–14]. It is well-known that the vascular wall is 
composed of intima, media, adventitia and immune 
elements: macrophages, T lymphocytes, dendriform 
cells and mast cells [15]. Hyperactivity of 
sympathetic system increases vascular tone and 
leads to angiospasm, at the same time it modulates 
free radical oxidation and triggers ad activates 
macrophages and dendritic cells of the artery 
wall. It leads to the synthesis of the inflammatory 
cytokines [tumor necrosis factor-α (TNF), 
interleukins (IL-1α, IL-6, IL-17)] by the immune 
cells [14, 16]. As a result, mechanisms which are 
responsible for information transfer to the nucleus 
and various genes expression, switch on. Nuclear 
factor kappa B (NF-kB) is one of these intracellular 
mediators [16–19], which enhances oxidative 
stress and can lead to HTN complications [20]. 

Nitric oxide (NO) plays an important role in free 
radical formation in HTN. It demonstrates both 
pro-inflammatory and anti-inflammatory effects. 
In certain reactions of immunoendocrinological 
system its actions depend on location and 
quantity [16, 20]. Actually, NF-kB activation is 
one of the major factors triggering inducible 
nitrooxidsintetaze transcription. This leads to  
an excessive NO production and free radical 
storage [20].

Superoxide anion formed in the endothelium 
binds excessive NO, thus inhibiting vasodilation. 
Peroxynitrite is produced as a result of the process, 
which blocks endothelial NO-synthase (eNOS) 
preventing electron transfer to L-arginine in 
order to form NO. Peroxynitrite transports 
electrons to molecular oxygen, enhancing the 
cytotoxic effects of superoxide anion [16, 20]. 
Transcriptional iNOS NF-kB activation appears a 
trigger for endothelial dysfunction, now regarded 
as one of the main mechanisms of sustained 
HTN. Endothelial dysfunction is accompanied 
by a shifting in vasoconstriction-vasodilatation 
system in favor of vasodilatation. It is also 
accompanied by the endothelium barrier alteration 
and permeability increase. Ultimately endothelial 
dysfunction leads to the structural and metabolic 
exhaustion of endotheliocytes associated with 
their functional decline, loss and desquamation 
and inhibition of regeneration [16, 21, 22]. 
Moreover, endotheliocyte apoptosis increases 
endothelium permeability, local cytokine expression 
and monocyte attraction into the subendothelial 
space. Mentioned pro-inflammatory changes can 
also trigger the proliferation of vascular SMC 
leading to functional failure of the vascular  
wall [23].

Constrictor agents should be mentioned when 
describing vasoregulatory system. Endothelin-1 is 
an important proinflammatory and vasoconstrictive 
peptide. It is mostly produced by endothelial cells, 
but can also be synthesized by vascular SMC [21]. 
Expression of adhesion molecules, endothelial 
leukocyte infiltration and activation of inflammatory 
kinases including protein kinase C (it regulates 
cell cycle, growth, differentiation and apoptosis) 
are considered to be the main pro-inflammatory 
actions of endothelin-1 [24]. Negative vascular 
effects of edothelin-1 at early HTN stages are 
primarily due to the activation of Ca 2+ channels 
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and subsequent vasoconstriction. Later on, this 
peptide contributes to the obliteration of the lumen 
due to SMC hypertrophy stimulation consequently 
promoting vascular wall changes through the 
fibroblast activation [21, 24]. Fibroblasts may 
occur from their precursors: circulating fibrocytes, 
or monocyte-macrophages, or epithelial (and 
endothelial) cells [25, 26]. Cell activation promotes 
transformation of fibroblasts into myofibroblasts 
with subsequent production of metalloproteinases 
and the synthesis of extracellular matrix key 
elements, including collagen 1, 3, 4, 5, and 7 types. 
These play an important role in cell migration and 
matrix remodeling [25, 27].

RAAS also has a powerful pro-inflammatory 
effect on hormones of cardiovascular homeostasis. 
Published data indicate the existence of renin 
receptors in target organs (heart, blood vessels, 
kidney, brain), as well as in liver, adipose tissue, 
adrenal glands, ovaries, reflecting the presence of 
the local angiotensin II releasing in these organs 
[28]. Receptor activation stimulates mitogen-
activated kinase, which regulates the processes 
of proliferation and apoptosis subsequently 
forming vascular dysfunction [29, 30]. However, 
the most profound cardiovascular changes are 
mediated by angiotensin II activation. Recent studies 
have shown the alternative way of angiotensin I to 
angiotensin II conversion instead of angiotensin-
converting enzyme-dependent pathway (ACE-
dependent). This pathway depends on chymases, 
cathepsin G, and other serine proteases. Moreover, 
in different organs and tissues predominates 
either ACE-dependent way or alternative ways of 
angiotensin II conversion. ACE is considered to 
be responsible for angiotensin II generating in the 
lumen, while chymase mediates its production in 
myocardial interstitium, media and adventitia 
and modulates sympathetic nervous system 
functioning as well as smooth muscles contraction 
[31–33]. Chymase has been recently shown to play 
an important role in cardiovascular remodeling 
through matrix metalloproteinases induction [34]. 
Furthermore, cardiac mast cell degranulation 
accompanied by the chymase release [34–36], 
associated with angiotensin II overproduction 
and subsequent relevant cardiovascular changes. 
Manifest pro-inflammatory effects of angiotensin II 
are mediated by its I type receptors (AP-1). 
A cascade of immunopathological reactions 

triggered by proinflammatory signaling pathways 
(including NF-kB) is activated through this 
receptor [21]. An immune cell attraction into 
the vessel wall is supported by macrophage 
monocyte chemoattractant protein-1 and adhesion 
molecules (VCAM-1, ICAM-1). This leads to 
even more marked cytokine release and NF-kB 
overstimulation [37–39].

Increased level of serum «hepatokine» 
(C-reactive protein) is the sign of immune system 
activation in hypertensive patients. On the one 
hand, it is associated with the inhibition of 
endothelial progenitor cells differentiation and 
their function impairment [18, 39]. On the other 
hand, there is an association with AP-1 receptor 
activation [19]. In turn, the excessive angiotensin II 
leads to the nicotinamide-N (NADPH) oxidase 
hyperactivity and overproduction of reactive oxygen 
species. This promotes redox-sensitive genes 
stimulation, thus exacerbating immunopathological 
process in the vascular wall [40, 41]. Moreover, 
angiotensin II has also profibrotic features. The 
content of extracellular matrix proteins is regulated 
by angiotensin II, macrophages through their 
effects on fibroblasts, and metalloproteinases as 
well [42]. Integrine expression (cell adhesion 
receptors interacting with extracellular matrix 
and involved in remodeling processes) is bounded 
with angiotensin II, according to recent data [17]. 
Some integrines are located on the cell surface in 
an inactive state. They can quickly be activated by 
cytokines and induce a signal transmission [43]. 
Angiotensin-II stimulates aldosterone secretion. 
In high concentration it also increases antidiuretic 
hormone secretion and causes SNS activation 
[16]. All these effects contribute to development 
of sustained HTN.

Aldosterone is able to activate immune cells 
by mineralcorticoid receptor stimulation. On the 
one hand, it acts as a pro-inflammatory, profibrotic 
and prooxidant agent by potentiating macrophages 
and dendritic cells to synthetize proinflammatory 
cytokines, which trigger NF-kB and fibrosis [44, 
45]. On the other hand, aldosterone performs 
a mitogenic effect on mesangial and smooth 
muscle cells stimulating insulin-like growth 
factor 1 (IGF-1) receptor expression [44, 46]. 
Thus, inflammatory signaling pathways activation 
by RAAS hormones supports inflammation in 
the vascular wall and contributes its remodeling.
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Figure. Neuroendocrinological mechanisms in hypertension development

note: SNS — sympathetic nervous system; RAAS — renin-angiotensin-aldosterone system; iNOS — inducible 
nitrooxidsintetaze; eNOS — endothelial nitrooxidsintetaze.

It has been shown that pro-inflammatory 
cytokines, endothelin-1 and reactive oxygen 
species play a major role in cardiac mast 
cells degranulation, which is associated with 
myocardial remodeling in HTN. Releasing TNFα 
and chymase and tryptase enzymes induce matrix 
metalloproteinases involved in extracellular 
matrix degradation. Moreover, tryptase was 
found to convert cardial fibroblasts into 
myofibroblasts inducing myocardial remodeling 
[34]. Myocardial and vascular remodeling 
through angiosclerosis and cardiosclerosis (due 
to the activation of fibroblasts and mast cells) 
can be considered as one of the main mechanisms 
of sustained HTN.

Moreover, overproduction of pro-inflammatory 
cytokines and vasoactive substances is a major 
factor for renal damage in HTN. The main effects 
of TNFα, IL-1 and IL-6 are apoptosis induction of 
almost all types of kidney cells, intraglomerular 
hemodynamics impairment, increased production 
of reactive oxygen species and procoagulants by 
mesangial and endothelial cells [47]. Progressing 
of nephrosclerosis leads to further RAAS activation 
resulting in vicious circle formation [48].

Thus, NF-kB activation, triggered by 
immune cells in vascular wall, enhances pro-
duction of cytokines, chemokines, adhesins, 
metalloproteinases, and inducible nitrooxidaze. 
NF-kB hyperactivation leads to uncontrolle

d inflammatory induction. A progression of 
the inflammatory process in HTN development is 
accompanied by atherosclerosis formation and 
cardiovascular complications. However, NF-kB 
regulates the expression of genes involved in 
mitochondrial ribonucleic acid replication 
(mRNA) of the type 1 anti-inflammatory enzyme 
11β-hydroxysteroiddehydrogenase [49, 50]. 
It occurs in immune cells, adipocytes, and 
endothelial cells and triggers conversion of inactive 
glucocorticoid hormone cortisone to active 
cortisol, forming “intracellular” hypercorticoidism 
[50–53]. On the one hand, glucocorticosteroids 
suppress inflammation by inhibiting NF-kB and by 
reducing proinflammatory cytokine synthesis. On 
the other hand, they stimulate mineralocorticoid 
receptors promoting severe HTN [50].

Summary data about neuroimmunoendo-
crinological mechanisms of HTN development are 
presented on the Figure.

Thus, the mechanisms of sustained HTN 
development can only be understood in perspective 
of integrative biomedical science. It combines 
the idea of three regulatory systems to be brought 
together: the nervous, the immune and the 
endocrine one. This knowledge will inevitably 
lead to changes in understanding of HTN treatment 
options and complication prevention.
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