Preview

Артериальная гипертензия

Расширенный поиск

Матриксные металлопротеиназы и сердечно-сосудистые заболевания

https://doi.org/10.18705/1607-419X-2009-15-5-532-538

Полный текст:

Аннотация

Обзор посвящен роли матриксных металлопротеиназ системы протеолиза, которые выполняют огромное количество разнообразных функций и контролируют практически все стороны биологических процессов. Согласно общепринятой классификации все протеины делят на четыре семейства: сериновые, цистеиновые, аспартатные и металлопротеиназы (последние получили название матриксных металлопротеиназ, ММП). К настоящему времени известно 28 представителей семейства ММП (от ММП-1 до MMII-28). На основании данных структурной организации и субстратной специфичности в семействе ММП выделены 4 подсемейства: коллагеназы, желатиназы, стромелизины и неклассифицированные ММП. Изучение роли семейства ММП в кардиологической практике существенно расширяет представления о патогенетических механизмах развития сердечно-сосудистой патологии и демонстрирует активную деятельность различных подсемейств ММП: стромелизинов - ММП-3 коллагеназ - ММП-8, желатиназ - ММП-9. Предполагается, что при инфаркте миокарда, нестабильной стенокардии, реабилитации после инфаркта миокарда, ремоделировании левого вентрикулярного отверстия специфическая роль принадлежит активности ММП-3 и ММП-9. Достаточно интересным является факт полиморфизма генов ММП-3, ММП-9, связанных с восприимчивостью к сердечно-сосудистым заболеваниям, атеросклерозу артерий, инфаркту миокарда, аневризме аорты. Активность ММП-2 и ММП-7 представителей подсемейств же латиназ и неклассифицированных ММП при кардиологической патологии остается противоречивой и до конца не изученной.

Об авторах

А. А. Турна
ФГУЗ Клиническая больница № 83 ФМБА России
Россия


Р. Т. Тогузов
ГОУ ВПО РГМУ ФУВ
Россия


Список литературы

1. Яровая Г.А. Биорегулируюшие функции и патогенетическая роль протеолиза. Современные представления и перспективы // Лаб. медицина. - 2000. - Т. 3. - С. 19-22.

2. Rawlings N.D. Barren A.J. Classification of peptidases by comparison of primary and tertiary structures. - Biomed. Health Res. - 1997. Mri.13. -P. 13-21.

3. Rawlings N.D., Barrett A.J. Evolutionary families of metallopeptidases // Meth. Enzymol. - 1995. - Vol. 248. - P. 183 -228.

4. Barrett A.J. Evolution and tlic structural classification of peptidases // Biomed. Health Res. - 1997. - Vol. 13. - P. 3-12.

5. Gross J., Lapiere C.M. Collagenolytic activity in amphibian tissues: atissue culture assay // Proc. Natl. Acad. Sci. USA. - 1962. - Vol. 48. - Р. 1014-1022.

6. Chow A.K., Cena J., Schul/ R. Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature // Brit. J. Pharmacol. - 2007. - Vol. 152. № 2. - P. 189-205.

7. Creemers E.J.M., Cleutjens J.P.M., Smits J.F.M., Daemen M.J.A.P. Matrix metalloproteinase inhibition after myocardial infarction // Circ. Res. - 2001. - Vol. 89, № 3. - P. 201-210.

8. Davis L.S. A question of transformation. The synovial fibroblast in rheumatoid arthritis // Am. J. Pathol. - 2003. - Vol. 162. - № 5. - P. 1399-1402.

9. Hooper N.M. Families of zinc metalloproteases // FEBS Lett. 1994. - Vol. 354. - № 1. - P. 1-6.

10. Woessncr J.F.Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASFB J. - 1991. - Vol. 5, № 8, - P. 2145-2154.

11. Hidalgo M., Eckhardt G.S. Development of matrix metalloproteinase inhibitors in cancer therapy // J. Nation. Cancer Inst. - 2001. - Vol. 93, № 3, - Р. 178-193.

12. Close D.R. Matrix metalloproteinase inhibitors in rheumatic diseases // Ann. Rheum. Dis. - 2001. - Vol. 60, № 3. - P. 62-67.

13. Яровая Г.А. Биорегулируюшие функции и патогенезитческая роль протеолиза. Распространение, классификация и основы механизма действия протеиназ // Лаб. медицина. - 2001. - Т. 4. - С. 75-80.

14. Brinckerhoff C.E. Joint destruction in arthritis: metalloproteinase in the spotlight // Arthritis Rheum. - 1991. - Vol. 34. - P. 1073-1075.

15. Davies M.J. Reactive oxygen species, metalloproteinases, and plaque stability // Circulation. - 1998. - Vol. 97, № 24. - P. 2382-2383.

16. Li J., Schwimmbeck P.L. Tschope C. et al. Collagen degradation in a murine myocarditis model: relevance of matrix metalloproteinase in association with inflammatory induction //Cardiovasc. Res. - 2002. - Vol. 56, № 2. - P. 235-247.

17. Woessner J.F. Jr. Role of matrix proteases in processing enamel proteins It Connect. Tissue Res. - 1998. - Vol. 39, № 1-3. - P. 69-73.

18. Kleiner D.E., Steller-Stevcnson W.G. Matrix metalloproteinases and metastasis // Cancer Chemother. Pharmacol. - 1999. - Vol. 43 (Suppl.). - P. 42-51.

19. Nagase H. Activation mechanisms of matrix metalloproteinases // BioI.Chem. - 1997. - Vol. 378, №3-4. - P. 151-160.

20. Rudek M.A., Figg W.D., Dyer V. et al. Phase I clinical trial of oral COL 3. - a matrix metalloproteinase inhibitor, in patients with refractory metastatic cancer // J. Clin. Oncol. - 2001. - Vol. 19, № 2. - P. 584-592.

21. Iloekslra R. Hskens F.A.L.M., Verweij J. Matrix metalloproteinase inhibitors: current developments and future perspectives // The Oncologist. - 2001. - Vol. 6, № 5. - P. 415- 427.

22. Kim I.I.E., Dalai S.S., Young E. et al. Disruption of the myocardial extracellular matrix leads to cardiac dysfunction // J. Clin. Invest. 2000. - Vol. 106. - P. 857-866.

23. Mohammed P.P., Smookler D.S. Metalloproteinases, inflammation, and rheumatoid arthritis // Ann. Rheum. Dis., 2003. - Vol. 62, № 2. - P. 1143-1147.

24. Montfort I., Perez-Tamayo R. The distribution of collagenase in normal rat tissues // J. Histochem. Cytochcm. - 1975. - Vol. 23, № 12. - P. 910-920.

25. Cleutjens J.P.M., Kandala J.C., Guarda E. et al. Regulation of collagen degradation in the rat myocardium after infarction // J. Mol. Cell. Cardiol. - 1994. - Vol. 27, № 6. - P. 1281-1292.

26. Galis Z.S., Sukhova G.K., Lark M.W, Increased expression of matrix melalloproteinaseand matrix degrading activity in vulnerable regions of human atherosclerotic plaques // J. Clin. Invest. - 1994. - Vol. 94, № 6. - P. 2493-2503.

27. Loftus I.M., NaylorA.R., Goodall S. et al. Increased matrix MMP9 activity in unstable carotid plaques: a potential role in acute plaque disruption // Stroke. - 2000. - Vol. 31, № 1. - P. 40-47.

28. Tyagi S.C., Matsubara L., Weber K.T. Direct extraction and estimation of collagcnase(s) activity by zymography in microquantities of rat myocardium and uterus // Clin. Biochem. - 1993. - Vol. 26, № 3. - P. 191-198.

29. Nagase H., Barrett A.J., Woessncr J.F. Nomenclature and glossary of the matrix metalloproteinases // Matrix Suppl. - 1992. - Vol. 1. - P. 421-424.

30. Saffarian S., Collier I.E., Manner B.L. et al. Interstitial col-lagenase is a Brownian ratchet driven by proteolysis of collagen // Science. - 2004. - Vol. 306, № 5693. - P. 108-111.

31. Patterson C., Pourmotabbed I., Mainardi C.L., Hasty K.A. Structure-function relationship of human neutrophil eollagenasc: identification of regions responsible lor substrate specificity and general proteinase activity // PNAS. - 1993. - Vol. 90, № 7. - P. 2569-2573.

32. Mukherjec R., Brinsa T.A., Dowdy K.B. et al. Myocardial infarct expansion and matrix metalloproteinase inhibition / Circulation. - 2003. - Vol. 107, № 4. - P. 618-625.

33. Spinale P.O., Coker M.L., Heung L.J. et al. A matrix metalloproteinase induction/activation system exists in the human myocardium and is upregulated in heart failure // Circulation. 2000. - Vol. 102, № 16. - P. 1944-1949.

34. Волкова M.A. Клиническая онкогематология. М.: «МЕДИЦИНА». - 2001. - С. 9-21.

35. Webb C.S., Bonnema D.D., llinan A.S. et al. Specific temporal profile of matrix metalloproteinase release occurs in patients after myocardial infarction // Circulation. 2006. - Vol. 114, № 10. - P. 1020-1027.

36. Aimes R.T., Quigley J.P. Matrix metalloproteinase-2 is an interstitial collagenase: inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments // J. Biol. Chem. - 1995. - Vol. 270, № 11. - P. 5872-5876.

37. Kahari V.M., Saarialho-Kere U. Matrix metalloproteinases in skin // Exp. Dermatol. 1997. - Vol. 6, № 5. - P. 199-213.

38. Huhtala P., Tuuttila A., Chow L.T. et al. Complete structure of the human gene for 92-kDa type IV collagenase. Divergent regulation of expression for the 92- and 72-kilodalton enzyme genes in HT-1080 cells // J. Biol. Chem. - 1991. - Vol. 266, № 25. - P. 16485-16490.

39. Zhang В., Ye S., Herrmann S.M. el al. Functional polymorphism in the regulatory region of gelatinase В gene in relation to severity of coronary atherosclerosis // Circulation. - 1999. - Vol. 99, № 14. - P. 1788-1794.

40. Siwik D.A., Pagano P.J., Colucci W.S. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts // Am. J. Physiol. Cell. Physiol. 2001. - Vol. 280, № 1. - P. 53-60.

41. Aljada A., Cihanim H., Mohanty P. et al. Hydrocortisone suppresses intranuclear activator-protein-1 (AР-1) binding activity in mononuclear cells and plasma matrix metalloproteinase 2 and 9 (MMP-2 and MMP-9) // J. Clin. Endocrinol. Metab. - 2001. - Vol. 86, № 12. - P. 5988-5991.

42. Potier M., Karl M., Elliot S.J. et al. Response to sex hormones differs in atherosclerosis-susceptible and -resistant mice // Am. J. Physiol. Endocrinol. Metab. - 2003. - Vol. 285, № 6. - P. E1237-E1245.

43. Heymans S., Luttun A., Nuyens I., et al. Inhibition of plasminogen activators or matrix metalloprolcinases prevent cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure // Nat. Med. - 1999. - Vol. 5, № 10. - P. 1135-1142.

44. Kai H., Ikeda H., Yasukawa II. et al. Peripheral blood levels of matrix metalloproteinase 2 and 9 are elevated in patients with acute coronary syndromes // J. Am. Coll. Cardiol. 1998. - Vol. 32, № 2. - P. 368-372.

45. Ardans J., F.conomou A., Martinson J. et al. Oxidised low density and high density lipoproteins regulate the production of matrix metallo-proteinases 1 and 9 by activated monocytes // J. Leukoc. Biol. - 2002. - Vol. 71, № 6. - P. 1012-1018.

46. Herzog E., Gu A., Kohmoto Т. Burkhoff D. Early activation of metalloproteinases after experimental myocardial infarction occurs in infarct and non-infarct zones // Cardiovasc. Pathol. - 1998. - Vol. 7, № 6. - P. 307-312.

47. Etoh Т., Joffs C., Deschamps A.M. et al. Myocardial and interstitial matrix metalloproteinase activity after acute myocardial infarction in pigs // Am. J. Physiol. Heart. Circ. Physiol. 2001. - Vol. 281, № 3. - P. H987-H994.

48. Lanone S., Zheng I., Zhu Z. et al. Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and -12 in IL-13-induced inflammation and remodeling // J. Clin. Invest. 2002, - Vol. 110, № 4. - P. 463-474.

49. Garvin P., Nilsson L., Carslensen J. et al. Circulating matrix metalloproteinase-9 is associated with cardiovascular risk factors in a middle-aged normal population // Oxford.J. Med. - 2008. - Vol. 101, № 10. - P. 785-791.

50. Borden P., Heller R.A. Transcriptional control of matrix metalloproteinases and the tissue inhibitors of matrix metalloproteinases // Crit. Rev. Eukaryot. Gene Expr. - 1997. - Vol. 7, № 1-2. - P. 159-178.

51. Moon S.K., Cha B.Y. Kim C.H. ERK1/2 mediates TNF-alpha-indueed matrix metalloproteinase-9 expression in human vascular smooth muscle cells via the regulation of NF-kappaB and AP I: involvement of the ras dependent pathway // J. Cell. Physiol. 2004. Vol. 198, № 3. - P. 417-427.

52. Inokubo Y., Hanada H., Ishizaka H. et al. Plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome // Am. Heart. J.- 2001. -Vol. 141, № 2. - P. 211- 217.

53. Ctezki J.P., Hafeli U.O., Song P. el al. Parenchymal cell proliferation in coronary arteries after percutaneous transluminal coronary angioplasty: a human tissue bank study // Int. J. Radial. Oncol. Biol.Phys. - 1999. - Vol. 45, № 4. - P. 963-968.

54. Sierevogel M.J., Pasterkamp G., de Kleijn D.P., Strauss B.H. Matrix metalloproteinases: a therapeutic target in cardiovascular disease // Curr. Pharm. Des. - 2003. - Vol. 9, № 13. - P. 1033-1040.

55. van Beusekom H.M., Post M.J., Whelan D.M. et al. Metalloproteinase inhibition by batimastat does not reduce neoinlimal thickening in stented atherosclerotic porcine femoral arteries // Cardiovasc. Radiant Med. - 2003. - Vol. 4, № 4. - P. 186-191.

56. Плеханова О.С., Соломатииа М.А., Меньшиков M.Ю. и др. Активаторы плазминогена и матриксные металлопротеиназы в экспериментальном ремоделировании артерии // Кардиология. - 2006. - Т. 9, № 46. - С. 47-56.

57. Collen D. The plasminogen (fibrinolytic) system // Тhromb. Haemost. - 1999. - Vol. 82, № 2. - P. 259-270.

58. Lijnen H.R., Van Hoef В., Lupu F. et al. Function of the plasminogen/plasmin and matrix metalloproteinase systems after vascular injur) i mice with targeted inactivation of fibrinolytic system genes // Thromb. Vast Biol. - 1998. - Vol. 18, № 7. - P. 1035-1045.

59. Ye S. Polymorphism in matrix metalloproteinase gene promoton implication in regulation of gene expression and susceptibility of variou diseases // Matrix. Biol. - 2000. Vol. 19, № 7. - P. 623-629.

60. Richardson P.D., Davies M.J., Born G.V.R. Influence of plaque configuration and stress distribution on lissuring of coronary athcrosclcroli plaques // Lancet. - 1989. - Vol. 2, № 8669. - P. 941-944.

61. Borgono C.A., Diamandis E.P. The emerging roles of human tissue kallikreins in cancer // Nat. Rev. Cancer. 2004. - Vol.4 №11. - P. 876-890.

62. Yamada Y., Izawa H., Ichihara S. et al. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes // New Eng. J. Med. - 2002. - Vol. 347, № 24. - P. 1916-1923.

63. Humphries S.E., Martin S., Cooper J., Miller G. Interaction between smoking and the stromelysin-1 (MMP3) gene 5A/6A promote-polymorphism and risk of coronary heart disease in healthy men // Ann. Hum. Genet. - 2002. - Vol. 66. Pt. 5-6. - P. 343-352.

64. Ye S., Eriksson P., Hamstcn A. et al. Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression // J. Biol. Chem. - 1996. - Vol. 271. - P. 13055- 13060.

65. Ye S., Watts G.F., Mandalia S. et al. Preliminary report: genetic variation in the human stromelysin promoter is associated with progression of coronary atherosclerosis // Brit. Heart J. - 1995. - Vol. 73, № 3. - P. 209-215.

66. Humphries S.E., Luong L.-A., Talmud P.I. et al. The 5A/6A polymorphism in the promoter of the stromelysin-l (MMP 3) gene predict' progression of angiographically determined coronary artery disease in me in the LOCAT gemfibrozil study // Atherosclerosis. 1998. - Vol. 134, № 1. - P. 49-56.

67. Medley Т.Е., Kingwell B.A., Gatzka C.D. et al. Matrix metalloproteinase-3 genotype contributes to age-related aortic stiffening througf modulation of gene and protein expression // Circ. Res. - 2003. - Vol. 92, № 11. - P. 1254-1261.

68. Thrailkill K., Moreau C.S., Cockrell G. et al. Physiologies matrix metalloproteinase concentrations in serum during childhood an adolescence, using Luminex Multiplex technology // Clin. Chem. Lab Med. - 2005. - Vol. 43, № 12. - P. 1392-1399.

69. Jung K. Serum or plasma: what kind of blood sample should be used to measure circulating matrix metalloproteinases and their inhibitors? J. Neuroimmunol. - 2005, Vol. 162. - P. 1-2.

70. Thrailkill K., Cockrell G., Simpson P. et al. Physiologiea matrix metalloproteinase (MMP) concentrations: comparison of semi and plasma specimens // Clin. Chem. Lab. Med. 2006. - Vol. 44, № 4. - P. 503-504.

71. Rohde L.E., Ducharme A., Arroyo L.H. et al. Matrix metalloptoteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice // Circulation. - 1999. - Vol. 99, № 23. - P. 3063-3070.

72. Apple F.S. Pearce L.A., Chung A. et al. Multiple biomarker use for detection of adverse events in patients presenting with symptom suggestive of acute coronary syndrome // Clin. Chem. - 2007. - Vol. 53, № 5. - P. 874-881.

73. Li Y.Y., Feng Y., McTiernan C.F. et al. Down regulation of matrix metalloproteinases and regulation in collagen damage in the failing human heart after support with left ventricular assist devices // Circulation. - 2001. - Vol. 104, № 10. - P. 1147-1152.


Для цитирования:


Турна А.А., Тогузов Р.Т. Матриксные металлопротеиназы и сердечно-сосудистые заболевания. Артериальная гипертензия. 2009;15(5):532-538. https://doi.org/10.18705/1607-419X-2009-15-5-532-538

For citation:


Tourna A.A., Toguzov R.T. Matrix metalloproteinases and cardiovascular diseases. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2009;15(5):532-538. (In Russ.) https://doi.org/10.18705/1607-419X-2009-15-5-532-538

Просмотров: 117


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)