The mechanisms of Ca2+-dependent hypertension formation on the model of rat cardiomyocytes in the culture
https://doi.org/10.18705/1607-419X-2009-15-6-683-687
Abstract
About the Authors
E. A. ZakharovRussian Federation
N. Z. Klyueva
Russian Federation
G. B. Belostotskaya
Russian Federation
References
1. Zwadlo C., Borlak J. Disease-associated changes in the expression of ion channels, ion receptors, ion exchangers and Ca2+-handling proteins in heart hypertrophy // Toxicol. Appl. Pharmacol. - 2005. - Vol. 207. - P. 244-256.
2.
3. Чурина С.К., Клюева Н.З., Кузнецов С.Р. и др. К патогенезу артериальной гипертензии при дефиците кальция в питьевой воде // Артериальная гипертензия. - 1995. - Т. 1, № Х. - С. 25-30.
4.
5. Kawaguchi H., Sano H., Iizuka K. et al. Phosphatidylinositol metabolism in hypertrophic rat heart // Circ. Res. - 1993. - Vol. 72, № 5. - P. 966-972.
6.
7. Zwadlo C. and Borlak J. Nifedipine represses ion channels, transporters and Ca2+-binding proteins in hearts of spontaneously hypertensive rats // Toxicol. Appl. Pharmacol. - 2006. - Vol. 213. - P. 224-234.
8.
9. Shorofsky S.R., Aggarwal R., Corretti M. et al. Cellular mechanisms of altered contractility in the hypertrophied heart. Big hearts, big sparks // Circ. Res. - 1999. - Vol. 84. - P. 424-434.
10.
11. Escobar A.L., Ribeiro-Costa R., Villalba-Galea C. et al. Developmental changes of intracellular Ca2+-transients in beating rat hearts // Am. J. Physiol. Heart Circ. Physiol. - 2004. - Vol. 286. - P. H971-H978.
12.
13. Perez C.G., Copello J.A., Li Y. et al. Ryanodine receptor function in newborn rat heart // Am. J. Physiol. Heart Circ. Physiol. - 2005. - Vol. 288. - P. H2527-H2540.
14.
15. Bers D.M. Excitation-contraction coupling and cardiac contractile force. - 2d ed. - Dordrecht, Boston, London: Kluwer Academic, 2001. - 427 p.
16.
17. Grynkiewicz G., Роenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties // J. Biol. Chem. - 1985. - Vol. 260. - P. 3440-3450.
18.
19. Bukoski R.D. Intracellular Ca2+ metabolism of isolated resistance arteries and cultured vascular myocytes of spontaneously hypertensive and Wistar- Kyoto normotensive rats // J. Hypertens. - 1990. - Vol. 8, № 1. - P. 37-43.
20.
21. Sugiyama T., Yoshizumi M., Takaku F., Yazaki Y. Abnormal calcium handling in vascular smooth muscle cells of spontaneously hypertensive rats // J. Hypertens. - 1990. - Vol. 8, № 4. - P. 369-375.
22.
23. Bukoski R.D., Lastelic B.A., Xue H. et al. Intracellular Ca2+ and force generation determined in resistance arteries of normotensive and hypertensive rats // J. Hypertens. - 1994. - Vol. 12, № 1. - P. 15-21.
24.
25. Katoh H., Schlotthauer K., Bers D.M. Transmission of information from cardiac dihydropyridine receptor to ryanodine receptor: evidence from BayK 8644 effects on resting Ca(2+) sparks // Circ. Res. - 2000. - Vol. 87, № 2. - P. 106-111.
26.
27. Asano M., Matsuda T., Hayakawa M. et al. Increased resting Ca2+ maintains the myogenic tone and activates K+ channels in arteries from young spontaneously hypertensive rats // Eur. J. Pharmacol. - 1993. - Vol. 247, № 3. - P. 295-304.
28.
29. Kubo T., Taguchi K., Ueda M. L-type calcium channels in vascular smooth muscle cells from spontaneously hypertensive rats: effects of calcium agonist and antagonist // Hypertens. Res. - 1998. - Vol. 21, № 1. - P. 33-37.
30.
Review
For citations:
Zakharov E.A., Klyueva N.Z., Belostotskaya G.B. The mechanisms of Ca2+-dependent hypertension formation on the model of rat cardiomyocytes in the culture. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2009;15(6):683-687. (In Russ.) https://doi.org/10.18705/1607-419X-2009-15-6-683-687