Comorbid insomnia and arterial hypertension: pathogenetic models and promising biomarkers
https://doi.org/10.18705/1607-419X-2019-25-2-143-157
Abstract
The review describes the major mechanisms for the initiation and maintenance of comorbid insomnia and arterial hypertension based on the relevant pathogenetic scenarios of insomnia such as the concept of sympathetic activation, the neurobiological model of insomnia, and stress-diathesis model (or 3-P model). The clinical data are lacking, and available clinical studies indicate the association between blood pressure levels and the hyperactivation of the central nervous system during sleep, characterized by electroencephalographic β-activity, and with sleep latency. However, biologically active substances involved in “neurogenic inflammation” also play a significant role in homeostasis maintenance following the exposure to endogenous and exogenous stress factors. The functions of interleukin-6, gamma-aminobutyric acid, substance P, melatonin, serotonin and orexin in normal and pathological conditions indicate their contribution to the development of comorbid insomnia and hypertension. We emphasize the role of insomnia as a separate nosological unit, comorbid with hypertension, as well as the importance of research of molecular mechanisms underlying the association between insomnia and arterial hypertension aimed at identification of therapeutic targets and prognostic markers.
About the Authors
I. A. FilchenkoClinical resident, Department of neurology named after acad. S. N. Davidenkov
L. S. Korostovtseva
Russian Federation
MD, PhD, Researcher, Somnology Laboratory, Research Department for Hypertension, Institute of the Heart and Vessels, Associate Professor, Cardiology Department
2 Akkuratov street, St Petersburg, 197341 Russia
N. M. Tereshchenko
Laboratory assistant, Laboratory of comparative somnology and neuroendocrinology
St Petersburg, Russia
Y. V. Sviryaev
MD, PhD, DSc, Head, Somnology Laboratory, Research Department for Hypertension, Institute of the Heart and Vessels
St Petersburg, Russia
I. A. Voznjouk
MD, PhD, DSc, Prof, Deputy Director for Science
St Petersburg, Russia
References
1. Irwin MR, Olmstead R, Breen EC, Witarama T, Carrillo C, Sadeghi N, et al. Tai Chi, cellular inflammation, and transcriptome dynamics in breast cancer survivors with insomnia: A randomized controlled trial. J Nat Cancer Institute. 2014;2014 (50):295–301. doi:10.1093/jncimonographs/lgu028
2. Hajak G, Rodenbeck A, Staedt J, Bandelow B, Huether G, Rüther E. Nocturnal plasma melatonin levels in patients suffering from chronic primary insomnia. J Pineal Res. 1995;19(3):116–22. doi:10.1111/j.1600-079X.1995.tb00179.x
3. Grossman E, Laudon M, Zisapel N. Effect of melatonin on nocturnal blood pressure: meta-analysis of randomized controlled trials. Vascular Health and Risk Management. 2011;7(1):577–84. doi:10.2147/VHRM.S24603
4. Clifford L, Dampney BW, Carrive P. Spontaneously hypertensive rats have more orexin neurons in their medial hypothalamus than normotensive rats. Exp Physiol. 2015;100(4):388–98. doi:10.1113/expphysiol.2014.084137
5. Zucconi M, Ferri R. Assessment of sleep disorders and diagnostic procedures. European Sleep Research Society. 2014.
6. Niederhofer H, Staffen W, Mair A, Pittschieler K. Melatonin facilitates sleep in individuals with mental retardation and insomnia. J Autism Developmental Disorders. 2003;33(4):469–72. doi:10.1023/A:1025027231938
7. Schwimmer H, Stauss HM, Abboud F, Nishino S, Mignot E, Zeitzer JM. Effects of sleep on the cardiovascular and thermoregulatory systems: a possible role for hypocretins. J App Physiol. 2010;109(4):1053–63. doi:10.1152/japplphysiol.00516.2010
8. Morin CM, Benca R. Chronic insomnia. The Lancet. 2012;379(9821):1129–41. doi:10.1016/S0140-6736(11)60750-2
9. Irwin MR, Olmstead R, Breen EC, Witarama T, Carrillo C, Sadeghi N, et al. Cognitive behavioral therapy and tai chi reverse cellular and genomic markers of inflammation in late-life insomnia: a randomized controlled trial. Biological Psychiatry. 2015;78(10): 721–9. doi:10.1016/j.biopsych.2015.01.010
10. Hajak G, Rodenbeck A, Staedt J, Bandelow B, Huether G, Rüther E. Nocturnal plasma melatonin levels in patients suffering from chronic primary insomnia. J Pineal Res. 1995;19(3):116–22. doi:10.1111/j.1600-079X.1995.tb00179.x
11. Grima NA, Rajaratnam SMW, Mansfield D, Sletten TL, Spitz G, Ponsford JL. Efficacy of melatonin for sleep disturbance following traumatic brain injury: A randomised controlled trial. BMC Medicine. 2018;16(1):1–10. doi:10.1186/s12916-017-0995-1
12. Berteotti C, Silvani A. The link between narcolepsy and autonomic cardiovascular dysfunction: a translational perspective. Clinical Autonomic Research. 2018;28(6):545–55. doi:10.1007/s10286-017-0473‑z
13. Dinh QN, Drummond GR, Sobey CG, Chrissobolis S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. BioMed Research International. 2014;2014 (406960): 1–11. doi:10.1155/2014/406960
14. Niederhofer H, Staffen W, Mair A, Pittschieler K. Melatonin facilitates sleep in individuals with mental retardation and insomnia. J Autism Developmental Disorders. 2003;33(4):469–72. doi:10.1023/A:1025027231938
15. Levenson JC, Kay DB, Buysse DJ. The pathophysiology of insomnia. Chest. 2015;147(4):1179–92. doi:10.1378/chest.14-1617
16. Wade AG, Ford I, Crawford G, McMahon AD, Nir T, Laudon M, et al. Efficacy of prolonged release melatonin in insomnia patients aged 55–80 years: quality of sleep and next-day alertness outcomes. Current Medical Research and Opinion. 2007;23 (10):2597–605. doi:10.1185/030079907X233098
17. Buysse DJ. Insomnia. J Am Med Assoc 2012;309(7):706–16. doi:10.1001/jama.2013.193.Insomnia
18. Li A, Nattie E. Orexin, cardio-respiratory function, and hypertension. Frontiers in Neuroscience. 2014;8:1–18. doi:10.3389/fnins.2014.00022
19. Grima NA, Rajaratnam SMW, Mansfield D, Sletten TL, Spitz G, Ponsford JL. Efficacy of melatonin for sleep disturbance following traumatic brain injury: A randomised controlled trial. BMC Medicine. 2018;16(1):1–10. doi:10.1186/s12916-017-0995-1
20. Chamarthi B, Williams GH, Ricchiuti V, Srikumar N, Hopkins PN, Luther JM, et al. Inflammation hypertension: the interplay of interleukin‑6, dietary sodium and the reninangiotensin system in humans. Am J Hypertens. 2011;24(10):1–13. doi:10.1038/ajh.2011.113.Inflammation
21. Wade AG, Ford I, Crawford G, McMahon AD, Nir T, Laudon M, et al. Efficacy of prolonged release melatonin in insomnia patients aged 55–80 years: quality of sleep and next-day alertness outcomes. Current Medical Research and Opinion. 2007;23 (10):2597–605. doi:10.1185/030079907X233098
22. Van Maanen A, Meijer AM, Smits MG, Van Der Heijden KB, Oort FJ. Effects of melatonin and bright light treatment in childhood chronic sleep onset insomnia with late melatonin onset: a randomized controlled study. Sleep. 2017; 40(2):1–11. doi:10.1093/sleep/zsw038
23. Buysse DJ, Germain A, Hall M, Monk TH, Nofzinger EA. A neurobiological model of insomnia. Drug Discovery Today: Disease Models. 2011;8(4):129–137. doi:10.1016/j.ddmod.2011.07.002.A
24. Hashmat S, Rudemiller N, Lund H, Abais-Battad JM, Van Why S, Mattson DL. Interleukin‑6 inhibition attenuates hypertension and associated renal damage in Dahl salt-sensitive rats. Am J Renal Physiol. 2016;311 (3):555–61. doi:10.1152/ajprenal.00594.2015
25. Bathgate CJ, Fernandez-Mendoza J. Insomnia, short sleep duration, and high blood pressure: recent evidence and future directions for the prevention and management of hypertension. Curr Hypertens Rep. 2018;20(52):1–9. doi:10.1007/s11906-018-0850-6
26. Van Maanen A, Meijer AM, Smits MG, Van Der Heijden KB, Oort FJ. Effects of melatonin and bright light treatment in childhood chronic sleep onset insomnia with late melatonin onset: a randomized controlled study. Sleep. 2017; 40(2):1–11. doi:10.1093/sleep/zsw038
27. Sateia MJ, Buysse DJ, Krystal AD, Neubauer DN, Heald JL. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med. 2017;13(3):307–49. doi:10.5664/jcsm.6506
28. Heijnen BFJ, Van Essen H, Schalkwijk CG, Janssen BJA, Struijker-Boudier HAJ. Renal inflammatory markers during the onset of hypertension in spontaneously hypertensive rats. Рнзукеу-ты Куы. 2014;37(2):100–9. doi:10.1038/hr.2013.99
29. Walsh JK, Coulouvrat C, Hajak G, Lakoma MD, Petukhova M, Roth T, et al. Nighttime insomnia symptoms and perceived health in the america insomnia survey (AIS). Sleep. 2011;34(8):997–1011. doi:10.5665/SLEEP.1150
30. Sateia MJ, Buysse DJ, Krystal AD, Neubauer DN, Heald JL. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med. 2017;13(3):307–49. doi:10.5664/jcsm.6506
31. Winkelman JW. Insomnia disorder. New England Journal of Medicine. 2015;373(15):1437–44. doi:10.1056/NEJMcp1412740
32. Fraer M, Kilic F. Serotonin: a different player in hypertensionassociated thrombosis. Hypertension. 2015;65(5):942–8. doi:10.1161/HYPERTENSIONAHA.114.05061
33. Rodriguez-Iturbe B, Johnson RJ. Role of inflammatory cells in the kidney in the induction and maintenance of hypertension. Nephrology Dialysis Transplantation. 2006;21(2):260–3. doi:10.1093/ndt/gfi319
34. Fraer M, Kilic F. Serotonin: a different player in hypertensionassociated thrombosis. Hypertension. 2015;65(5):942–8. doi:10.1161/HYPERTENSIONAHA.114.05061
35. Javaheri S, Redline S. Insomnia and risk of cardiovascular disease. Chest. 2017;152(2):435–44. doi:10.1016/j.chest.2017.01.026
36. Cespuglio R. Serotonin: its place today in sleep preparation, triggering or maintenance. Sleep Med. 2018;(49):31–9. doi:10.1016/j.sleep.2018.05.034
37. Mao SQ, Sun JH, Gu TL, Zhu FB, Yin FY, Zhang LN. Hypomethylation of interleukin‑6 (IL‑6) gene increases the risk of essential hypertension: a matched case-control study. J Hum Hypertens. 2017;31(8):530–6. doi:10.1038/jhh.2017.7
38. Cespuglio R. Serotonin: its place today in sleep preparation, triggering or maintenance. Sleep Med. 2018;(49):31–9. doi:10.1016/j.sleep.2018.05.034
39. Jarrin DC, Alvaro PK, Bouchard MA, Jarrin SD, Drake CL, Morin CM. Insomnia and hypertension: A systematic review. Sleep Medicine Reviews. 2018;41:3–38. doi:10.1016/j.smrv.2018.02.003
40. Tamura Y, Phan C, Tu L, Le Hiress M, Thuillet R, Jutant EM, et al. Ectopic upregulation of membrane-bound IL6R drives vascular remodeling in pulmonary arterial hypertension. JJ Clin Invest. 2018;128(5):1956–70. doi:10.1172/JCI96462
41. Monti JM. Serotonin control of sleep-wake behavior. Sleep Med Rev. 2011;15(4):269–81. doi:10.1016/j.smrv.2010.11.003
42. Monti JM. Serotonin control of sleep-wake behavior. Sleep Med Rev. 2011;15(4):269–81. doi:10.1016/j.smrv.2010.11.003
43. Schölzel BE, Post MC, Dymarkowski S, Wuyts W, Meyns B, Budts W, et al. Plasma interleukin‑6 adds prognostic information in pulmonary arterial hypertension. Eur Resp J. 2014;43(3):909–12. doi:10.1183/09031936.00174113
44. Zhan Y, Chen R, Zhang F, Wang J, Sun Y, Ding R, et al. Insomnia and its association with hypertension in a communitybased population in China: A cross-sectional study. Heart Asia. 2014;6(1):88–93. doi:10.1136/heartasia‑2013-010440
45. Murray NM, Buchanan GF, Richerson GB. Insomnia caused by serotonin depletion is due to hypothermia. Sleep. 2015;38 (12):1985–93. doi:10.5665/sleep.5256
46. Murray NM, Buchanan GF, Richerson GB. Insomnia caused by serotonin depletion is due to hypothermia. Sleep. 2015;38 (12):1985–93. doi:10.5665/sleep.5256
47. Pullamsetti SS, Seeger W, Savai R. Classical IL‑6 signaling: a promising therapeutic target for pulmonary arterial hypertension. J Clin Invest. 2018;128(5):1720–3. doi:10.1172/JCI120415
48. Shabbir F, Patel A, Mattison C, Bose S, Krishnamohan R, Sweeney E et al. Effect of diet on serotonergic neurotransmission in depression. Neurochem Int. 2013:62:324–39. doi:10.1016/j.neuint.2012.12.014
49. Budhiraja R, Roth T, Hudgel DW, Budhiraja P, Drake CL. Prevalence and polysomnographic correlates of insomnia comorbid with medical disorders. Sleep. 2011;34(7):859–67. doi:10.5665/sleep.1114
50. Shabbir F, Patel A, Mattison C, Bose S, Krishnamohan R, Sweeney E et al. Effect of diet on serotonergic neurotransmission in depression. Neurochem Int. 2013:62:324–39. doi:10.1016/j.neuint.2012.12.014
51. Gottesmann C. GABA mechanisms and sleep. Neuroscience. 2002;111(2):231–9. doi:10.1016/S0306-4522(02)00034-9
52. Wang L, Zhou C, Zhu D, Wang X, Fang L, Zhong J, et al. Serotonin‑1A receptor alterations in depression: a meta-analysis of molecular imaging studies. BMC Psychiatry. 2016;16(1):1–9. doi:10.1186/s12888-016-1025-0
53. Wang L, Zhou C, Zhu D, Wang X, Fang L, Zhong J, et al. Serotonin‑1A receptor alterations in depression: a meta-analysis of molecular imaging studies. BMC Psychiatry. 2016;16(1):1–9. doi:10.1186/s12888-016-1025-0
54. Lin CL, Liu TC, Lin FH, Chung CH, Chien WC. Association between sleep disorders and hypertension in Taiwan: A nationwide population-based retrospective cohort study. J Hum Hypertens. 2016;31(3):220–4. doi:10.1038/jhh.2016.55
55. Plante DT, Jensen JE, Schoerning L, Winkelman JW. Reduced γ-aminobutyric acid in occipital and anterior cingulate cortices in primary insomnia: a link to major depressive disorder. Neuropsychopharmacology. 2012;37(6):1548–57. doi:10.1038/npp.2012.4
56. Baranyi A, Amouzadeh-Ghadikolai O, Rothenhäusler HB, Theokas S, Robier C, Baranyi M, et al. Nitric oxide-related biological pathways in patients with major depression. PLoS ONE. 2015;10(11):1–15. doi:10.1371/journal.pone.0143397
57. Baranyi A, Amouzadeh-Ghadikolai O, Rothenhäusler HB, Theokas S, Robier C, Baranyi M, et al. Nitric oxide-related biological pathways in patients with major depression. PLoS ONE. 2015;10(11):1–15. doi:10.1371/journal.pone.0143397
58. Bathgate CJ, Edinger JD, Wyatt JK, Krystal AD. Objective but not subjective short sleep duration associated with increased risk for hypertension in individuals with insomnia. Sleep. 2016;39(5): 1037–45. doi:10.5665/sleep.5748
59. Winkelman, Buxton, Jensen, Benson, O’Connor, Wang C et al. Reduced brain GABA in primary insomnia: preliminary data from 4T proton magnetic resonance spectroscopy (1H-MRS). Sleep. 2008;31(11):1499–506.
60. Watts SW, Morrison SF, Davis RP, Barman SM. Serotonin and blood pressure regulation. Pharmacol Rev. 2012;64(2):359–88. doi:10.1124/pr.111.004697
61. Watts SW, Morrison SF, Davis RP, Barman SM. Serotonin and blood pressure regulation. Pharmacol Rev. 2012;64(2):359–88. doi:10.1124/pr.111.004697
62. Vgontzas AN, Liao D, Bixler EO, Chrousos GP, Vela-Bueno A. Insomnia with objective short sleep duration is associated with a high risk for hypertension. Sleep. 2009;32(4):491–7. doi:10.1093/sleep/32.4.491
63. Chen HH, Cheng PW, Ho WY, Lu PJ, Lai CC, Tseng YM, et al. Renal denervation improves the baroreflex and GABA system in chronic kidney disease-induced hypertension. Scientific Reports. 2016;6(38447):1–13. doi:10.1038/srep38447
64. Razavi BM, Hosseinzadeh H. A review of the role of orexin system in pain modulation [Internet]. Biomed Pharmacother. 2017;90:187–93. doi:10.1016/j.biopha.2017.03.053
65. Razavi BM, Hosseinzadeh H. A review of the role of orexin system in pain modulation [Internet]. Biomed Pharmacother. 2017;90:187–93. doi:10.1016/j.biopha.2017.03.053
66. Fernandez-Mendoza J, Vgontzas AN, Liao D, Shaffer ML, Vela-Bueno A, Basta M, et al. Insomnia with objective short sleep duration and incident hypertension: The Penn State Cohort. Hypertension. 2012;60(4):929–35. doi:10.1161/HYPERTENSIONAHA.112.193268
67. Ma P, Li T, Ji F, Wang H, Pang J. Effect of GABA on blood pressure and blood dynamics of anesthetic rats. Int J Clin Exp Med. 2015;8(8):14296–302.
68. Rani M, Kumar R, Krishan P. Implicating the potential role of orexin in hypertension. Naunyn-Schmiedeberg’s Archives of Pharmacology. 2017;390(7):667–76. doi:10.1007/s00210-017-1378‑z
69. Rani M, Kumar R, Krishan P. Implicating the potential role of orexin in hypertension. Naunyn-Schmiedeberg’s Archives of Pharmacology. 2017;390(7):667–76. doi:10.1007/s00210-017-1378‑z
70. Ramos AR, Weng J, Wallace DM, Petrov MR, Wohlgemuth WK, Sotres-Alvarez D, et al. Sleep patterns and hypertension using actigraphy in the Hispanic Community Health Study/Study of Latinos. Chest. 2018;153(1):87–93. doi:10.1016/jchest.2017.09.028
71. Mei L, Zhang J, Mifflin S. Hypertension alters GABA receptor-mediated inhibition of neurons in the nucleus of the solitary tract. Am J Physiology-Regulatory, Integrative and Comparative Physiology. 2003;285(6):1276–86. doi:10.1152/ajpregu.00255.2003
72. Rani M, Kumar R, Krishan P. Role of orexins in the central and peripheral regulation of glucose homeostasis: evidences & mechanisms. Neuropeptides. 2018;68:1–6. doi:10.1016/j.npep.2018.02.002
73. Rani M, Kumar R, Krishan P. Role of orexins in the central and peripheral regulation of glucose homeostasis: evidences & mechanisms. Neuropeptides. 2018;68:1–6. doi:10.1016/j.npep.2018.02.002
74. Vozoris NT. Insomnia symptom frequency and hypertension risk. J Clin Psychiatry. 2014;75(06):616–23. doi:10.4088/jcp.13m08818
75. Shimada M, Hasegawa T, Nishimura C, Kan H, Kanno T, Nakamura T, et al. Anti-hypertensive effect of gamma-aminobutyric acid (GABA) rich Chlorella on high normal blood pressure and borderline hypertension in placebo-controlled double blind study. J Clin Exp Hypertens. 2019;31(4):342–54.
76. Inutsuka A, Yamanaka A. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Frontiers in Endocrinology. 2013; 4:1–10. doi:10.3389/fendo.2013.00018
77. Uka MS, Oshida KY, Ugimori HS. Persistent insomnia is a predictor of hypertension in Japanese male workers. J Occup Health. 2003;45:344–50.
78. Inutsuka A, Yamanaka A. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Frontiers in Endocrinology. 2013; 4:1–10. doi:10.3389/fendo.2013.00018
79. Byun JI, Shin YY, Chung SE, Shin WC. Safety and efficacy of gamma-aminobutyric acid from fermented rice germ in patients with insomnia symptoms: A randomized, double-blind trial. J Clin Neurol (Korea). 2018;14(3):291–5. doi:10.3988/jcn.2018.14.3.291
80. Silvani A. Orexins and the cardiovascular events of awakening. Temperature. 2017;4(2):128–40. doi:10.1080/23328940.2017.1295128
81. Silvani A. Orexins and the cardiovascular events of awakening. Temperature. 2017;4(2):128–40. doi:10.1080/23328940.2017.1295128
82. Phillips B, Bůžková P, Enright P. Insomnia did not predict incident hypertension in older adults in the Cardiovascular Health Study. Sleep. 2009;32(1):65–72. doi:10.5665/sleep/32.1.65
83. Ursavas A. Upregulating substance P levels to treat obstructive sleep apnea. Expert Opinion on Therapeutic Targets. 2008;12(5):583–8. doi:10.1517/14728222.12.5.583
84. Prober DA, Rihel J, Onah AA, Sung R‑J, Schier AF. Hypocretin/Orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci. 2006;26 (51):13400–10. doi:10.1523/JNEUROSCI.4332–06.2006
85. Prober DA, Rihel J, Onah AA, Sung R‑J, Schier AF. Hypocretin/Orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci. 2006;26 (51):13400–10. doi:10.1523/JNEUROSCI.4332–06.2006
86. Sforza E, Saint Martin M, Barthelemy JC, Roche F. Association of self-reported sleep and hypertension in noninsomniac elderly subjects. J Clin Sleep Med. 2014;10(9):955–71. doi:10.5664/jcsm.4026
87. Wang Y, Wang DH. Role of substance P in renal injury during DOCA-salt hypertension. Endocrinology. 2012;153 (12):5972–9. doi:10.1210/en.2012-1284
88. Tang S, Huang W, Lu S, Lu L, Li G, Chen X, et al. Increased plasma orexin-A levels in patients with insomnia disorder are not associated with prepro-orexin or orexin receptor gene polymorphisms. Peptides. 2017;88:55–61. doi:10.1016/j.peptides.2016.12.008
89. Tang S, Huang W, Lu S, Lu L, Li G, Chen X, et al. Increased plasma orexin-A levels in patients with insomnia disorder are not associated with prepro-orexin or orexin receptor gene polymorphisms. Peptides. 2017;88:55–61. doi:10.1016/j.peptides.2016.12.008
90. Ratti E, Carpenter DJ, Zamuner S, Fernandes S, Squassante L, Danker-Hopfe H, et al. Efficacy of vestipitant, a neurokinin‑1 receptor antagonist, in primary insomnia. Sleep. 2013;36(12):1823–30. doi:10.5665/sleep.3208
91. Thomas SJ, Calhoun D. Sleep, insomnia, and hypertension: current findings and future directions. J Am Soc Hypertens. 2017;11(2):122–9. doi:10.1016/j.jash.2016.11.008
92. Shirasaka T, Nakazato M, Matsukura S, Takasaki M, Kanna H. Sympathetic and cardiovascular actions of orexins in conscious rats. Am J Physiol. 1999;277(6):1780–5.
93. Shirasaka T, Nakazato M, Matsukura S, Takasaki M, Kanna H. Sympathetic and cardiovascular actions of orexins in conscious rats. Am J Physiol. 1999;277(6):1780–5.
94. Russell IJ, Orr MD, Littman B, Vipraio GA, Alboukrek D, Michalek JE, et al. Elevated cerebrospinal fluid levels of substance P in patients with the fibromyalgia syndrome. Arthritis & Rheumatism. 1994;37(11):1593–601. doi:10.1002/art.1780371106
95. Castro-Diehl C, Diez Roux A V., Redline S, Seeman T, McKinley P, Sloan R, et al. Sleep duration and quality in relation to autonomic nervous system measures: the multi-ethnic study of atherosclerosis (MESA). Sleep. 2016;39(11):1927–40. doi:10.5665/sleep.6218
96. Li A, Hindmarch CCT, Nattie EE, Paton JFR. Antagonism of orexin receptors significantly lowers blood pressure in spontaneously hypertensive rats. J Physiol. 2013;591(17):4237–48 doi:10.1113/jphysiol.2013.256271
97. Li A, Hindmarch CCT, Nattie EE, Paton JFR. Antagonism of orexin receptors significantly lowers blood pressure in spontaneously hypertensive rats. J Physiol. 2013;591(17):4237–48 doi:10.1113/jphysiol.2013.256271
98. Lieb K, Ahlvers K, Dancker K, Strohbusch S, Reincke M, Feige B, et al. Effects of the neuropeptide substance P on sleep, mood, and neuroendocrine measures in healthy young men. Neuropsychopharmacology. 2002;27(6):1041–9. doi:10.1016/S0893-133X(02)00369‑X
99. Yamashita A, Hamada A, Suhara Y, Kawabe R, Yanase M, Kuzumaki N, et al. Astrocytic activation in the anterior cingulate cortex is critical for sleep disorder under neuropathic pain. Synapse. 2014;68(6):235–47. doi:10.1002/syn.21733
100. Clifford L, Dampney BW, Carrive P. Spontaneously hypertensive rats have more orexin neurons in their medial hypothalamus than normotensive rats. Exp Physiol. 2015;100(4):388–98. doi:10.1113/expphysiol.2014.084137
101. Clifford L, Dampney BW, Carrive P. Spontaneously hypertensive rats have more orexin neurons in their medial hypothalamus than normotensive rats. Exp Physiol. 2015;100(4):388–98. doi:10.1113/expphysiol.2014.084137
102. Guadagni V, Burles F, Ferrara M, Iaria G. Sleep quality and its association with the insular cortex in emotional empathy. Eur J Neurosci. 2018;48(6):2288–300. doi:10.1111/ejn.14124
103. Schwartz TL, Goradia V. Managing insomnia: An overview of insomnia and pharmacologic treatment strategies in use and on the horizon. Drugs in Context. 2013;1–10. doi:10.7573/dic.212257
104. Schwimmer H, Stauss HM, Abboud F, Nishino S, Mignot E, Zeitzer JM. Effects of sleep on the cardiovascular and thermoregulatory systems: a possible role for hypocretins. J App Physiol. 2010;109(4):1053–63. doi:10.1152/japplphysiol.00516.2010
105. Schwimmer H, Stauss HM, Abboud F, Nishino S, Mignot E, Zeitzer JM. Effects of sleep on the cardiovascular and thermoregulatory systems: a possible role for hypocretins. J App Physiol. 2010;109(4):1053–63. doi:10.1152/japplphysiol.00516.2010
106. Ono D, Yamanaka A. Hypothalamic regulation of the sleep/wake cycle. Neurosci Res. 2017;118:74–81. doi:10.1016/j.neures.2017.03.013
107. Kohlmann O, Cesaretti ML, Ginoza M, Tavares A, Zanella MT, Ribeiro AB, et al. Role of substance P in blood pressure regulation in salt-dependent experimental hypertension. Hypertension. 1997;29(1):506–9. doi:10.1161/01.hyp.29.1.506
108. Berteotti C, Silvani A. The link between narcolepsy and autonomic cardiovascular dysfunction: a translational perspective. Clinical Autonomic Research. 2018;28(6):545–55. doi:10.1007/s10286-017-0473‑z
109. Berteotti C, Silvani A. The link between narcolepsy and autonomic cardiovascular dysfunction: a translational perspective. Clinical Autonomic Research. 2018;28(6):545–55. doi:10.1007/s10286-017-0473‑z
110. Faulhaber HD, Oehme P, Baumann R, Enderlein J, Rathsack R, Rostock G, et al. Substance P in human essential hypertension. J Cardiovasc Pharmacol. 2008;10 (Sup 12):172–6. doi:10.1097/00005344-198710012-00029
111. Coote JH, Spyer KM. Central control of autonomic function. Brain and Neuroscience Advances. 2018;2:239821281881201. doi:10. 1177/2398212818812012
112. Li A, Nattie E. Orexin, cardio-respiratory function, and hypertension. Frontiers in Neuroscience. 2014;8:1–18. doi:10.3389/fnins.2014.00022
113. Li A, Nattie E. Orexin, cardio-respiratory function, and hypertension. Frontiers in Neuroscience. 2014;8:1–18. doi:10.3389/fnins.2014.00022
114. Li Y, Vgontzas AN, Fernandez-Mendoza J, Bixler EO, Sun Y, Zhou J, et al. Insomnia with physiological hyperarousal is associated with hypertension. Hypertension. 2015;65:644–50. doi:10.1161/HYPERTENSIONAHA.114.04604
115. Mori K, Asakura S, Ogawa H, Sasagawa S, Takeyama M. Decreases in Substance P and vasoactive intestinal peptide concentrations in plasma of stroke-prone spontaneously hypertensive rats. Jap Heart J. 1993;34(6):785–94. doi:10.1536/ihj.34.785
116. Bathgate CJ, Fernandez-Mendoza J. Insomnia, short sleep duration, and high blood pressure: recent evidence and future directions for the prevention and management of hypertension. Curr Hypertens Rep. 2018;20(52):1–9. doi:10.1007/s11906-018-0850-6
117. Bathgate CJ, Fernandez-Mendoza J. Insomnia, short sleep duration, and high blood pressure: recent evidence and future directions for the prevention and management of hypertension. Curr Hypertens Rep. 2018;20(52):1–9. doi:10.1007/s11906-018-0850-6
118. Bonnet MH, Arand DL. Hyperarousal and insomnia: state of the science. Sleep Med Rev. 2010;14(1):9–15. doi:10.1016/j.smrv.2009.05.002
119. Dehlin HM, Manteufel EJ, Monroe AL, Reimer MHJ, Levick SP. Substance P acting via the neurokinin‑1 receptor regulates adverse myocardial remodeling in a rat model of hypertension. Int J Cardiol. 2013;168(5):4643–4651. doi:10.1007/s00246-012-0450-1.A
120. Meléndez GC, Li J, Law BA, Janicki JS, Supowit SC, Levick SP. Substance P induces adverse myocardial remodelling via a mechanism involving cardiac mast cells. Cardiovasc Res. 2011;92(3):420–9. doi:10.1093/cvr/cvr244
121. Chen GH, Xia L, Wang F, Li XW, Jiao CA. Patients with chronic insomnia have selective impairments in memory that are modulated by cortisol. Psychophysiology. 2016;53(10):1567–76. doi:10.1111/psyp.12700
122. Chen L‑W, Chen C‑F, Lai Y‑L. Chronic activation of neurokinin‑1 receptor induces pulmonary hypertension in rats. Am J Physiol. 1999;276(5):1543–51. doi:10.1152/ajpheart.1999.276.5.h1543
123. DiBona GF. Sympathetic nervous system, diabetes, and hypertension. Hypertension. 2013;61:556–60. doi:10.1081/CEH‑100001196
124. Lanfranchi PA, Pennestri MH, Fradette L, Dumont M, Morin CM, Montplaisir J. Nighttime blood pressure in normotensive subjects with chronic insomnia: Implications for cardiovascular risk. Sleep. 2009;32(6):760–6. doi:10.1093/sleep/32.6.760
125. Katsi V, Karagiorgi I, Makris T, Papavasileiou M, Androulakis AE, Tsioufis C, et al. The role of melatonin in hypertension. Cardiovasc Endocrinol. 2012;1(1):13–8. doi:10.1097/xce.0b013e3283565783
126. Dudenbostel T, Acelajado MC, Pisoni R, Li P, Oparil S, Calhoun DA. Refractory hypertension: evidence of heightened activity as a cause of antihypertensive treatment failure. Hypertension. 2015;66(1):126–33. doi:10.1161/HYPERTENSIONAHA.115.05449.REFRACTORY
127. Grossman E. Should melatonin be used to lower blood pressure? Hypertens Res. 2013;36(8):682–3. doi:10.1038/hr.2013.29
128. Portaluppi F, Tiseo R, Smolensky MH, Hermida RC, Ayala DE, Fabbian F. Circadian rhythms and cardiovascular health. Sleep Med Rev. 2012;16(2):151–66. doi:10.1016/jsmrv.2011.04.003
129. Grossman E, Laudon M, Zisapel N. Effect of melatonin on nocturnal blood pressure: meta-analysis of randomized controlled trials. Vascular Health and Risk Management. 2011;7(1):577–84. doi:10.2147/VHRM.S24603
130. Crnko S, Du Pré BC, Sluijter JPG, Van Laake LW. Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nat Rev Cardiol. 2019; doi:10.1038/s41569-019-0167-4
131. Hajak G, Rodenbeck A, Staedt J, Bandelow B, Huether G, Rüther E. Nocturnal plasma melatonin levels in patients suffering from chronic primary insomnia. J Pineal Res. 1995;19(3):116–22. doi:10.1111/j.1600-079X.1995.tb00179.x
132. Odinak MM, Denishchuk IS. Ciradican blood pressure profile in patients with progredient hypertensive discirculatory encephalopathy. Vestnik Rossiiskoi Voenno-medicinskoi akademii = Bulletin of the Russian Medical Military Academy.2006;2(16):26–9. In Russian.
133. Niederhofer H, Staffen W, Mair A, Pittschieler K. Melatonin facilitates sleep in individuals with mental retardation and insomnia. J Autism Developmental Disorders. 2003;33(4):469–72. doi:10.1023/A:1025027231938
134. Odinak MM, Khubulava GG, Kuznetsov AN, Voznyuk IA, Arsenova NA. Correction of abnormal cerebral hemodynamics by novel angiotensin-converting enzyme inhibitors in hypertension. Arterial’naya Gipertenziya = Arterial Hypertension. 2006;12(4): 347–50. In Russian.
135. Grima NA, Rajaratnam SMW, Mansfield D, Sletten TL, Spitz G, Ponsford JL. Efficacy of melatonin for sleep disturbance following traumatic brain injury: A randomised controlled trial. BMC Medicine. 2018;16(1):1–10. doi:10.1186/s12916-017-0995-1
136. Tikhomirova OV, Mashkova NP, Mamatova Nt, Kotlyarova EV, Sorokoumov VA. Doppler diagnostics of cerebral circulation in lacunar stroke and hypertension. Arterial’naya Gipertenziya = Arterial Hypertension. 2003;9(5):174–7. In Russian.
137. Wade AG, Ford I, Crawford G, McMahon AD, Nir T, Laudon M, et al. Efficacy of prolonged release melatonin in insomnia patients aged 55–80 years: quality of sleep and next-day alertness outcomes. Current Medical Research and Opinion. 2007;23 (10):2597–605. doi:10.1185/030079907X233098
138. Ga̧secki D, Kwarciany M, Nyka W, Narkiewicz K. Hypertension, brain damage and cognitive decline. Curr Hypertens Rep. 2013;15(6):547–58. doi:10.1007/s11906-013-0398-4
139. Van Maanen A, Meijer AM, Smits MG, Van Der Heijden KB, Oort FJ. Effects of melatonin and bright light treatment in childhood chronic sleep onset insomnia with late melatonin onset: a randomized controlled study. Sleep. 2017; 40(2):1–11. doi:10.1093/sleep/zsw038
140. Amenta F, Di Tullio MA, Tomassoni D. Arterial hypertension and brain damage — evidence from animal models. Clin Exp Hypertens. 2003;25(6):359–80. doi:10.1081/CEH‑120023545
141. Sateia MJ, Buysse DJ, Krystal AD, Neubauer DN, Heald JL. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med. 2017;13(3):307–49. doi:10.5664/jcsm.6506
142. Sierra C, Doménech M, Camafort M, Coca A. Hypertension and mild cognitive impairment. Current Hypertension Reports. 2012;14(6):548–55. doi:10.1007/s11906-012-0315-2
143. Fraer M, Kilic F. Serotonin: a different player in hypertensionassociated thrombosis. Hypertension. 2015;65(5):942–8. doi:10.1161/HYPERTENSIONAHA.114.05061
144. Porter VR, Buxton WG, Avidan AY. Sleep, Cognition and dementia. Current Psychiatry Reports. 2015;17(97):1–11. doi:10.1007/s11920-015-0631-8
145. Cespuglio R. Serotonin: its place today in sleep preparation, triggering or maintenance. Sleep Med. 2018;(49):31–9. doi:10.1016/j.sleep.2018.05.034
146. Reid KJ, Baron KG, Lu B, Naylor E. Changes in cognitive performance are associated with changes in sleep in older adults with insomnia. Behav Sleep Med. 2016;14(3):295–310. doi:10.1016/j.sleep.2010.04.014.Aerobic
147. Monti JM. Serotonin control of sleep-wake behavior. Sleep Med Rev. 2011;15(4):269–81. doi:10.1016/j.smrv.2010.11.003
148. Zhang P, Tan C‑W, Chen G‑H, Ge Y‑J, Xu J, Xia L, et al. Patients with chronic insomnia disorder have increased serum levels of neurofilaments, neuron-specific enolase and S100B: does organic brain damage exist? Sleep Medicine. 2018;48:163–71. doi:https://doi.org/10.1016/j.sleep.2017.12.012
149. Murray NM, Buchanan GF, Richerson GB. Insomnia caused by serotonin depletion is due to hypothermia. Sleep. 2015;38 (12):1985–93. doi:10.5665/sleep.5256
150. Joo EY, Noh HJ, Kim J‑S, Koo DL, Kim D, Hwang KJ, et al. Brain gray matter deficits in patients with chronic primary insomnia. Sleep. 2013;36(7):999–1007. doi:10.5665/sleep.2796
151. Shabbir F, Patel A, Mattison C, Bose S, Krishnamohan R, Sweeney E et al. Effect of diet on serotonergic neurotransmission in depression. Neurochem Int. 2013:62:324–39. doi:10.1016/j.neuint.2012.12.014
152. O’Byrne JN, Berman Rosa M, Gouin JP, Dang-Vu TT. Neuroimaging findings in primary insomnia. Pathologie Biologie. 2014;62(5):262–9. doi:10.1016/j.patbio.2014.05.013
153. Wang L, Zhou C, Zhu D, Wang X, Fang L, Zhong J, et al. Serotonin‑1A receptor alterations in depression: a meta-analysis of molecular imaging studies. BMC Psychiatry. 2016;16(1):1–9. doi:10.1186/s12888-016-1025-0
154. Spiegelhalder K, Regen W, Prem M, Baglioni C, Nissen C, Feige B, et al. Reduced anterior internal capsule white matter integrity in primary insomnia. Human Brain Mapping. 2014;35(7): 3431–8. doi:10.1002/hbm.22412
155. Baranyi A, Amouzadeh-Ghadikolai O, Rothenhäusler HB, Theokas S, Robier C, Baranyi M, et al. Nitric oxide-related biological pathways in patients with major depression. PLoS ONE. 2015;10(11):1–15. doi:10.1371/journal.pone.0143397
156. Drake CL, Pillai V, Roth T. Stress and sleep reactivity: a prospective investigation of the stress-diathesis model of insomnia. Sleep. 2014;37(8):1295–304. doi:10.5665/sleep.3916
157. Watts SW, Morrison SF, Davis RP, Barman SM. Serotonin and blood pressure regulation. Pharmacol Rev. 2012;64(2):359–88. doi:10.1124/pr.111.004697
158. Spielman AJ, Caruso LS, Glovinsky PB. A behavioral perspective on insomnia treatment. The Psychiatric clinics of North America. 1987;10(4):541–53.
159. Razavi BM, Hosseinzadeh H. A review of the role of orexin system in pain modulation [Internet]. Biomed Pharmacother. 2017;90:187–93. doi:10.1016/j.biopha.2017.03.053
160. Xanthos DN, Sandkühler J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nature Rev Neurosci. 2014;15(1):43–53. doi:10.1038/nrn3617
161. Rani M, Kumar R, Krishan P. Implicating the potential role of orexin in hypertension. Naunyn-Schmiedeberg’s Archives of Pharmacology. 2017;390(7):667–76. doi:10.1007/s00210-017-1378‑z
162. Rohleder N, Aringer M, Boentert M. Role of interleukin‑6 in stress, sleep, and fatigue. Annals of the New York Academy of Sciences. 2012;1261(1):88–96. doi:10.1111/j.1749-6632.2012.06634.x
163. Rani M, Kumar R, Krishan P. Role of orexins in the central and peripheral regulation of glucose homeostasis: evidences & mechanisms. Neuropeptides. 2018;68:1–6. doi:10.1016/j.npep.2018.02.002
164. Hurtado-Alvarado G, Dominguez-Salazar E, Pavon L, Velazquez-Moctezuma J, Gomez-Gonzalez B. Blood-brain barrier disruption induced by chronic sleep loss: low-grade inflammation may be the link. J Immunol Res. 2016;2016 (4576012):1–15. doi:10.1155/2016/4576012
165. Inutsuka A, Yamanaka A. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Frontiers in Endocrinology. 2013; 4:1–10. doi:10.3389/fendo.2013.00018
166. Heinzelmann M, Lee H, Rak H, Livingston W, Barr T, Baxter T, et al. Sleep restoration is associated with reduced plasma C‑reactive protein and depression symptoms in military personnel with sleep disturbance after deployment. Sleep Med. 2014;15 (12):1565–70. doi:10.1016/j.sleep.2014.08.004
167. Silvani A. Orexins and the cardiovascular events of awakening. Temperature. 2017;4(2):128–40. doi:10.1080/23328940.2017.1295128
168. Erta M, Quintana A, Hidalgo J. Interleukin‑6, a major cytokine in the central nervous system. Int J Biol Sci. 2012;8(9): 1254–66. doi:10.7150/ijbs.4679
169. Prober DA, Rihel J, Onah AA, Sung R‑J, Schier AF. Hypocretin/Orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci. 2006;26 (51):13400–10. doi:10.1523/JNEUROSCI.4332–06.2006
170. Benedict C, Scheller J, Rose-John S, Born J, Marshall L. Enhancing influence of intranasal interleukin‑6 on slow-wave activity and memory consolidation during sleep. The FASEB J. 2009;23(10):3629–36. doi:10.1096/fj.08–122853
171. Tang S, Huang W, Lu S, Lu L, Li G, Chen X, et al. Increased plasma orexin-A levels in patients with insomnia disorder are not associated with prepro-orexin or orexin receptor gene polymorphisms. Peptides. 2017;88:55–61. doi:10.1016/j.peptides.2016.12.008
172. Burgos I, Richter L, Klein T, Fiebich B, Feige B, Lieb K, et al. Increased nocturnal interleukin‑6 excretion in patients with primary insomnia: a pilot study. Brain, Behavior, and Immunity. 2006;20(3):246–53. doi:10.1016/j.bbi.2005.06.007
173. Shirasaka T, Nakazato M, Matsukura S, Takasaki M, Kanna H. Sympathetic and cardiovascular actions of orexins in conscious rats. Am J Physiol. 1999;277(6):1780–5.
174. Vgontzas AN, Zoumakis M, Papanicolaou DA, Bixler EO, Prolo P, Lin HM, et al. Chronic insomnia is associated with a shift of interleukin‑6 and tumor necrosis factor secretion from nighttime to daytime. Metabolism. 2002;51(7):887–92. doi:10.1053/meta.2002.33357
175. Li A, Hindmarch CCT, Nattie EE, Paton JFR. Antagonism of orexin receptors significantly lowers blood pressure in spontaneously hypertensive rats. J Physiol. 2013;591(17):4237–48 doi:10.1113/jphysiol.2013.256271
176. Irwin MR, Olmstead R, Breen EC, Witarama T, Carrillo C, Sadeghi N, et al. Tai Chi, cellular inflammation, and transcriptome dynamics in breast cancer survivors with insomnia: A randomized controlled trial. J Nat Cancer Institute. 2014;2014 (50):295–301. doi:10.1093/jncimonographs/lgu028
177. Clifford L, Dampney BW, Carrive P. Spontaneously hypertensive rats have more orexin neurons in their medial hypothalamus than normotensive rats. Exp Physiol. 2015;100(4):388–98. doi:10.1113/expphysiol.2014.084137
178. Irwin MR, Olmstead R, Breen EC, Witarama T, Carrillo C, Sadeghi N, et al. Cognitive behavioral therapy and tai chi reverse cellular and genomic markers of inflammation in late-life insomnia: a randomized controlled trial. Biological Psychiatry. 2015;78(10): 721–9. doi:10.1016/j.biopsych.2015.01.010
179. Schwimmer H, Stauss HM, Abboud F, Nishino S, Mignot E, Zeitzer JM. Effects of sleep on the cardiovascular and thermoregulatory systems: a possible role for hypocretins. J App Physiol. 2010;109(4):1053–63. doi:10.1152/japplphysiol.00516.2010
180. Dinh QN, Drummond GR, Sobey CG, Chrissobolis S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. BioMed Research International. 2014;2014 (406960): 1–11. doi:10.1155/2014/406960
181. Berteotti C, Silvani A. The link between narcolepsy and autonomic cardiovascular dysfunction: a translational perspective. Clinical Autonomic Research. 2018;28(6):545–55. doi:10.1007/s10286-017-0473‑z
182. Chamarthi B, Williams GH, Ricchiuti V, Srikumar N, Hopkins PN, Luther JM, et al. Inflammation hypertension: the interplay of interleukin‑6, dietary sodium and the reninangiotensin system in humans. Am J Hypertens. 2011;24(10):1–13. doi:10.1038/ajh.2011.113.Inflammation
183. Li A, Nattie E. Orexin, cardio-respiratory function, and hypertension. Frontiers in Neuroscience. 2014;8:1–18. doi:10.3389/fnins.2014.00022
184. Hashmat S, Rudemiller N, Lund H, Abais-Battad JM, Van Why S, Mattson DL. Interleukin‑6 inhibition attenuates hypertension and associated renal damage in Dahl salt-sensitive rats. Am J Renal Physiol. 2016;311 (3):555–61. doi:10.1152/ajprenal.00594.2015
185. Bathgate CJ, Fernandez-Mendoza J. Insomnia, short sleep duration, and high blood pressure: recent evidence and future directions for the prevention and management of hypertension. Curr Hypertens Rep. 2018;20(52):1–9. doi:10.1007/s11906-018-0850-6
186. Heijnen BFJ, Van Essen H, Schalkwijk CG, Janssen BJA, Struijker-Boudier HAJ. Renal inflammatory markers during the onset of hypertension in spontaneously hypertensive rats. Рнзукеу-ты Куы. 2014;37(2):100–9. doi:10.1038/hr.2013.99
187. Rodriguez-Iturbe B, Johnson RJ. Role of inflammatory cells in the kidney in the induction and maintenance of hypertension. Nephrology Dialysis Transplantation. 2006;21(2):260–3. doi:10.1093/ndt/gfi319
188. Mao SQ, Sun JH, Gu TL, Zhu FB, Yin FY, Zhang LN. Hypomethylation of interleukin‑6 (IL‑6) gene increases the risk of essential hypertension: a matched case-control study. J Hum Hypertens. 2017;31(8):530–6. doi:10.1038/jhh.2017.7
189. Tamura Y, Phan C, Tu L, Le Hiress M, Thuillet R, Jutant EM, et al. Ectopic upregulation of membrane-bound IL6R drives vascular remodeling in pulmonary arterial hypertension. JJ Clin Invest. 2018;128(5):1956–70. doi:10.1172/JCI96462
190. Schölzel BE, Post MC, Dymarkowski S, Wuyts W, Meyns B, Budts W, et al. Plasma interleukin‑6 adds prognostic information in pulmonary arterial hypertension. Eur Resp J. 2014;43(3):909–12. doi:10.1183/09031936.00174113
191. Pullamsetti SS, Seeger W, Savai R. Classical IL‑6 signaling: a promising therapeutic target for pulmonary arterial hypertension. J Clin Invest. 2018;128(5):1720–3. doi:10.1172/JCI120415
192. Gottesmann C. GABA mechanisms and sleep. Neuroscience. 2002;111(2):231–9. doi:10.1016/S0306-4522(02)00034-9
193. Plante DT, Jensen JE, Schoerning L, Winkelman JW. Reduced γ-aminobutyric acid in occipital and anterior cingulate cortices in primary insomnia: a link to major depressive disorder. Neuropsychopharmacology. 2012;37(6):1548–57. doi:10.1038/npp.2012.4
194. Winkelman, Buxton, Jensen, Benson, O’Connor, Wang C et al. Reduced brain GABA in primary insomnia: preliminary data from 4T proton magnetic resonance spectroscopy (1H-MRS). Sleep. 2008;31(11):1499–506.
195. Chen HH, Cheng PW, Ho WY, Lu PJ, Lai CC, Tseng YM, et al. Renal denervation improves the baroreflex and GABA system in chronic kidney disease-induced hypertension. Scientific Reports. 2016;6(38447):1–13. doi:10.1038/srep38447
196. Ma P, Li T, Ji F, Wang H, Pang J. Effect of GABA on blood pressure and blood dynamics of anesthetic rats. Int J Clin Exp Med. 2015;8(8):14296–302.
197. Mei L, Zhang J, Mifflin S. Hypertension alters GABA receptor-mediated inhibition of neurons in the nucleus of the solitary tract. Am J Physiology-Regulatory, Integrative and Comparative Physiology. 2003;285(6):1276–86. doi:10.1152/ajpregu.00255.2003
198. Shimada M, Hasegawa T, Nishimura C, Kan H, Kanno T, Nakamura T, et al. Anti-hypertensive effect of gamma-aminobutyric acid (GABA) rich Chlorella on high normal blood pressure and borderline hypertension in placebo-controlled double blind study. J Clin Exp Hypertens. 2019;31(4):342–54.
199. Byun JI, Shin YY, Chung SE, Shin WC. Safety and efficacy of gamma-aminobutyric acid from fermented rice germ in patients with insomnia symptoms: A randomized, double-blind trial. J Clin Neurol (Korea). 2018;14(3):291–5. doi:10.3988/jcn.2018.14.3.291
200. Ursavas A. Upregulating substance P levels to treat obstructive sleep apnea. Expert Opinion on Therapeutic Targets. 2008;12(5):583–8. doi:10.1517/14728222.12.5.583
201. Wang Y, Wang DH. Role of substance P in renal injury during DOCA-salt hypertension. Endocrinology. 2012;153 (12):5972–9. doi:10.1210/en.2012-1284
202. Ratti E, Carpenter DJ, Zamuner S, Fernandes S, Squassante L, Danker-Hopfe H, et al. Efficacy of vestipitant, a neurokinin‑1 receptor antagonist, in primary insomnia. Sleep. 2013;36(12):1823–30. doi:10.5665/sleep.3208
203. Russell IJ, Orr MD, Littman B, Vipraio GA, Alboukrek D, Michalek JE, et al. Elevated cerebrospinal fluid levels of substance P in patients with the fibromyalgia syndrome. Arthritis & Rheumatism. 1994;37(11):1593–601. doi:10.1002/art.1780371106
204. Lieb K, Ahlvers K, Dancker K, Strohbusch S, Reincke M, Feige B, et al. Effects of the neuropeptide substance P on sleep, mood, and neuroendocrine measures in healthy young men. Neuropsychopharmacology. 2002;27(6):1041–9. doi:10.1016/S0893-133X(02)00369‑X
205. Schwartz TL, Goradia V. Managing insomnia: An overview of insomnia and pharmacologic treatment strategies in use and on the horizon. Drugs in Context. 2013;1–10. doi:10.7573/dic.212257
206. Kohlmann O, Cesaretti ML, Ginoza M, Tavares A, Zanella MT, Ribeiro AB, et al. Role of substance P in blood pressure regulation in salt-dependent experimental hypertension. Hypertension. 1997;29(1):506–9. doi:10.1161/01.hyp.29.1.506
207. Faulhaber HD, Oehme P, Baumann R, Enderlein J, Rathsack R, Rostock G, et al. Substance P in human essential hypertension. J Cardiovasc Pharmacol. 2008;10 (Sup 12):172–6. doi:10.1097/00005344-198710012-00029
208. Mori K, Asakura S, Ogawa H, Sasagawa S, Takeyama M. Decreases in Substance P and vasoactive intestinal peptide concentrations in plasma of stroke-prone spontaneously hypertensive rats. Jap Heart J. 1993;34(6):785–94. doi:10.1536/ihj.34.785
209. Dehlin HM, Manteufel EJ, Monroe AL, Reimer MHJ, Levick SP. Substance P acting via the neurokinin‑1 receptor regulates adverse myocardial remodeling in a rat model of hypertension. Int J Cardiol. 2013;168(5):4643–4651. doi:10.1007/s00246-012-0450-1.A
210. Meléndez GC, Li J, Law BA, Janicki JS, Supowit SC, Levick SP. Substance P induces adverse myocardial remodelling via a mechanism involving cardiac mast cells. Cardiovasc Res. 2011;92(3):420–9. doi:10.1093/cvr/cvr244
211. Chen L‑W, Chen C‑F, Lai Y‑L. Chronic activation of neurokinin‑1 receptor induces pulmonary hypertension in rats. Am J Physiol. 1999;276(5):1543–51. doi:10.1152/ajpheart.1999.276.5.h1543
212. Katsi V, Karagiorgi I, Makris T, Papavasileiou M, Androulakis AE, Tsioufis C, et al. The role of melatonin in hypertension. Cardiovasc Endocrinol. 2012;1(1):13–8. doi:10.1097/xce.0b013e3283565783
213. Grossman E. Should melatonin be used to lower blood pressure? Hypertens Res. 2013;36(8):682–3. doi:10.1038/hr.2013.29
214. Grossman E, Laudon M, Zisapel N. Effect of melatonin on nocturnal blood pressure: meta-analysis of randomized controlled trials. Vascular Health and Risk Management. 2011;7(1):577–84. doi:10.2147/VHRM.S24603
215. Hajak G, Rodenbeck A, Staedt J, Bandelow B, Huether G, Rüther E. Nocturnal plasma melatonin levels in patients suffering from chronic primary insomnia. J Pineal Res. 1995;19(3):116–22. doi:10.1111/j.1600-079X.1995.tb00179.x
216. Niederhofer H, Staffen W, Mair A, Pittschieler K. Melatonin facilitates sleep in individuals with mental retardation and insomnia. J Autism Developmental Disorders. 2003;33(4):469–72. doi:10.1023/A:1025027231938
217. Grima NA, Rajaratnam SMW, Mansfield D, Sletten TL, Spitz G, Ponsford JL. Efficacy of melatonin for sleep disturbance following traumatic brain injury: A randomised controlled trial. BMC Medicine. 2018;16(1):1–10. doi:10.1186/s12916-017-0995-1
218. Wade AG, Ford I, Crawford G, McMahon AD, Nir T, Laudon M, et al. Efficacy of prolonged release melatonin in insomnia patients aged 55–80 years: quality of sleep and next-day alertness outcomes. Current Medical Research and Opinion. 2007;23 (10):2597–605. doi:10.1185/030079907X233098
219. Van Maanen A, Meijer AM, Smits MG, Van Der Heijden KB, Oort FJ. Effects of melatonin and bright light treatment in childhood chronic sleep onset insomnia with late melatonin onset: a randomized controlled study. Sleep. 2017; 40(2):1–11. doi:10.1093/sleep/zsw038
220. Sateia MJ, Buysse DJ, Krystal AD, Neubauer DN, Heald JL. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med. 2017;13(3):307–49. doi:10.5664/jcsm.6506
221. Fraer M, Kilic F. Serotonin: a different player in hypertensionassociated thrombosis. Hypertension. 2015;65(5):942–8. doi:10.1161/HYPERTENSIONAHA.114.05061
222. Cespuglio R. Serotonin: its place today in sleep preparation, triggering or maintenance. Sleep Med. 2018;(49):31–9. doi:10.1016/j.sleep.2018.05.034
223. Monti JM. Serotonin control of sleep-wake behavior. Sleep Med Rev. 2011;15(4):269–81. doi:10.1016/j.smrv.2010.11.003
224. Murray NM, Buchanan GF, Richerson GB. Insomnia caused by serotonin depletion is due to hypothermia. Sleep. 2015;38 (12):1985–93. doi:10.5665/sleep.5256
225. Shabbir F, Patel A, Mattison C, Bose S, Krishnamohan R, Sweeney E et al. Effect of diet on serotonergic neurotransmission in depression. Neurochem Int. 2013:62:324–39. doi:10.1016/j.neuint.2012.12.014
226. Wang L, Zhou C, Zhu D, Wang X, Fang L, Zhong J, et al. Serotonin‑1A receptor alterations in depression: a meta-analysis of molecular imaging studies. BMC Psychiatry. 2016;16(1):1–9. doi:10.1186/s12888-016-1025-0
227. Baranyi A, Amouzadeh-Ghadikolai O, Rothenhäusler HB, Theokas S, Robier C, Baranyi M, et al. Nitric oxide-related biological pathways in patients with major depression. PLoS ONE. 2015;10(11):1–15. doi:10.1371/journal.pone.0143397
228. Watts SW, Morrison SF, Davis RP, Barman SM. Serotonin and blood pressure regulation. Pharmacol Rev. 2012;64(2):359–88. doi:10.1124/pr.111.004697
229. Razavi BM, Hosseinzadeh H. A review of the role of orexin system in pain modulation [Internet]. Biomed Pharmacother. 2017;90:187–93. doi:10.1016/j.biopha.2017.03.053
230. Rani M, Kumar R, Krishan P. Implicating the potential role of orexin in hypertension. Naunyn-Schmiedeberg’s Archives of Pharmacology. 2017;390(7):667–76. doi:10.1007/s00210-017-1378‑z
231. Rani M, Kumar R, Krishan P. Role of orexins in the central and peripheral regulation of glucose homeostasis: evidences & mechanisms. Neuropeptides. 2018;68:1–6. doi:10.1016/j.npep.2018.02.002
232. Inutsuka A, Yamanaka A. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Frontiers in Endocrinology. 2013; 4:1–10. doi:10.3389/fendo.2013.00018
233. Silvani A. Orexins and the cardiovascular events of awakening. Temperature. 2017;4(2):128–40. doi:10.1080/23328940.2017.1295128
234. Prober DA, Rihel J, Onah AA, Sung R‑J, Schier AF. Hypocretin/Orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci. 2006;26 (51):13400–10. doi:10.1523/JNEUROSCI.4332–06.2006
235. Tang S, Huang W, Lu S, Lu L, Li G, Chen X, et al. Increased plasma orexin-A levels in patients with insomnia disorder are not associated with prepro-orexin or orexin receptor gene polymorphisms. Peptides. 2017;88:55–61. doi:10.1016/j.peptides.2016.12.008
236. Shirasaka T, Nakazato M, Matsukura S, Takasaki M, Kanna H. Sympathetic and cardiovascular actions of orexins in conscious rats. Am J Physiol. 1999;277(6):1780–5.
237. Li A, Hindmarch CCT, Nattie EE, Paton JFR. Antagonism of orexin receptors significantly lowers blood pressure in spontaneously hypertensive rats. J Physiol. 2013;591(17):4237–48 doi:10.1113/jphysiol.2013.256271
238. Clifford L, Dampney BW, Carrive P. Spontaneously hypertensive rats have more orexin neurons in their medial hypothalamus than normotensive rats. Exp Physiol. 2015;100(4):388–98. doi:10.1113/expphysiol.2014.084137
239. Schwimmer H, Stauss HM, Abboud F, Nishino S, Mignot E, Zeitzer JM. Effects of sleep on the cardiovascular and thermoregulatory systems: a possible role for hypocretins. J App Physiol. 2010;109(4):1053–63. doi:10.1152/japplphysiol.00516.2010
240. Berteotti C, Silvani A. The link between narcolepsy and autonomic cardiovascular dysfunction: a translational perspective. Clinical Autonomic Research. 2018;28(6):545–55. doi:10.1007/s10286-017-0473‑z
241. Li A, Nattie E. Orexin, cardio-respiratory function, and hypertension. Frontiers in Neuroscience. 2014;8:1–18. doi:10.3389/fnins.2014.00022
242. Bathgate CJ, Fernandez-Mendoza J. Insomnia, short sleep duration, and high blood pressure: recent evidence and future directions for the prevention and management of hypertension. Curr Hypertens Rep. 2018;20(52):1–9. doi:10.1007/s11906-018-0850-6
Review
For citations:
Filchenko I.A., Korostovtseva L.S., Tereshchenko N.M., Sviryaev Y.V., Voznjouk I.A. Comorbid insomnia and arterial hypertension: pathogenetic models and promising biomarkers. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2019;25(2):143-157. (In Russ.) https://doi.org/10.18705/1607-419X-2019-25-2-143-157