Assessment of endothelium-dependent vasodilation in the clinic: what endothelial factor are we studying?
https://doi.org/10.18705/1607-419X-2020-26-2-211-218
Abstract
Objective. To study the contribution of the main endothelial vasodilators using different functional tests.
Design and methods. Blood flow in the microvessels of the forearm skin was assessed in 30 healthy volunteers (20-21 years) using high-frequency Doppler ultrasound. Three functional tests were performed: iontophoresis with acetylcholine, a test with reactive hyperemia and a temperature test with local heating of the forearm skin to 42 °C. To analyze the mechanisms of endothelium-dependent vasodilation we carried out iontophoresis of vasoactive substances: L-Nitro-Arginine Methyl Ester (L-NAME) — inhibitor of endothelial NO synthase (eNOS), tetraethylammonium (TEA) — inhibitor of endothelial hyperpolarizing factor (EDHF), diclofenac sodium — inhibitor of cyclooxygenase (COX).
Results. During the test with acetylcholine was characterized by a rapid increase in the volume rate of blood flow for 2 minutes, from 4 minutes there was a slow decrease in the volume rate of blood flow. The blockade of nitric oxide and prostacyclin led to a slowdown in blood flow growth and the blockade of EDHF to accelerate the recovery of the reaction of microvessels to acetylcholine. In postocclusion test changes in blood flow occur only under blockade of nitric oxide, while the blockade of EDHF and prostacyclin showed no effect on reactive hyperemia. Similar results were obtained by local heating of the skin.
Conclusions. Nitric oxide plays a leading role in all tests, including local heat test and flow-mediated dilation. Endothelial hyperpolarizing factor is significant only in the mechanism of acetylcholine-induced vasodilation.
About the Authors
E. Yu. VasinaRussian Federation
Elena Yu. Vasina - MD, PhD, Associate Professor, Department of Pathophysiology.
6-8 L’va Tolstogo street, St Petersburg, 197022
Z. I. Malakhova
Russian Federation
Zinaida L. Malakhova - MD, Department of Ultrasound Diagnostics.
6-8 L’va Tolstogo street, St Petersburg, 197022
I. D. Anosov
Russian Federation
Ilya A. Anosov - 6th year student.
6-8 L’va Tolstogo street, St Petersburg, 197022
A. V. Tishkov
Russian Federation
Artem V Tishkov - Candidate of Physical and Mathematical Sciences, Associate Professor, Head, Department of Physics.
6-8 L’va Tolstogo street, St Petersburg, 197022
V. F. Mitreikin
Russian Federation
Vladimir F. Mitreikin - MD, PhD, DSc, Professor, Department of Pathophysiology.
6-8 L’va Tolstogo street, St Petersburg, 197022
T. D. Vlasov
Russian Federation
Timur D. Vlasov - MD, PhD, DSc, Professor, Head, Department of Pathophysiology.
6-8 L’va Tolstogo street, St Petersburg, 197022
References
1. Gutterman DD, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, Ait-Aissa K et al. The human microcirculation: regulation of flow and beyond. Circ Res. 2016;118(1):157-172. doi:10.1161/CIRCRESAHA.115.305364
2. Konukoglu D, Uzun H. Endothelial dysfunction and hypertension. Adv Exp Med Biol. 2017;956:511-540. doi:10.1007/5584_2016_90
3. Kang KT. Endothelium-derived relaxing factors of small resistance arteries in hypertension. Toxicol Res. 2014;30(3):141-148. doi:10.5487/TR.2014.30.3.141
4. Kobuchi S, Miura K, Iwao H, Ayajiki K. Nitric oxide modulation of endothelium-derived hyperpolarizing factor in agonist-induced depressor responses in anesthetized rats. Eur J Pharmacol. 2015;762:26-34. doi:10.1016/j.ejphar.2015.04.053
5. Brunt VE, Minson CT. KCa channels and epoxyeicosatrienoic acids: major contributors to thermal hyperaemia in human skin. J Physiol. 2012;590(15):3523-3534. doi:10.1113/jphysiol.2012.236398
6. Johnson JM, Minson CT, Kellogg DL. Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Compr Physiol. 2014;4(1):33-89. doi:10.1002/cphy.c130015
7. Holowatz LA, Thompson CS, Minson CT, Kenney WL. Mechanisms of acetylcholine-mediated vasodilatation in young and aged human skin. J Physiol. 2005;563(3):965-973.
8. Malakhova ZL, Vasina EYu, Vorobiev EA, Nesterovich II, Vlasov TD. Noninvasive method of endothelial hyperpolarizing factor research in the clinic. Regional blood circulation and microcirculation. 2013;12(4):70-74. In Russian.
9. Krupatkin AI, Sidorov VV Functional diagnostics of microcirculatory-tissue systems: oscillations, information, nonlinearity: guidelines for doctors. M.: Book house “LIBROKOM", 2013. 496 p. In Russian.
10. Li QY, Zhu MJ, Chen L. Effects of aging on endothelium-dependent vasodilation of human artery. Sichuan Da Xue Xue Bao Yi Xue Ban. 2019;50(2):210-214.
11. Dreyfuss C, Wauters A, Adamopoulos D, Pochet S, Azarkan M, Berkenboom G et al. L-NAME iontophoresis: a tool to assess NO-mediated vasoreactivity during thermal hyperemic vasodilation in humans. J Cardiovasc Pharmacol. 2013;61(5):361-368. doi:10.1097/FJC.0b013e3182858f81
12. Yoshioka T, Nagaoka T, Song Y, Yokota H, Tani T, YoshidaA. Role of neuronal nitric oxide synthase in regulating retinal blood flow during flicker-induced hyperemia in cats. Invest Ophthalmol Vis Sci. 2015;56(5):3113-3120. doi:10.1167/iovs.14-15854
13. Lorenzo S, Minson CT. Human cutaneous reactive hyperaemia: role of BKCa channels and sensory nerves. J Physiol. 2007;585(Pt1):295-303. doi:10.1113/jphysiol.2007.143867
14. Larkin SW, Williams TJ. Evidence for sensory nerve involvement in cutaneous reactive hyperemia in humans. Circ Res. 1993;73(1):147-154.
15. Sagaidachny AA. Occlusive test: methods of analysis, reaction mechanisms, prospects of application. Regional Blood Circulation and Microcirculation. 2018;17(3):5-22. doi.org/10.24884/1682-6655-2018-17-3-5-22. In Russian.
16. Green DJ, Dawson EA, Groenewoud HMM, Jones H, Thijssen DHJ. Is flow-mediated dilation nitric oxide mediated: a meta-analysis. Hypertension. 2014;63(2):376-382. doi: 10.1161/HYPERTENSIONAHA.113.02044
17. Taylor WF, Johnson JM, O’Leary D, Park MK. Effect of high local temperature on reflex cutaneous vasodilation. J Appl Physiol Respir Environ Exerc Physiol. 1984;57(1):191-196. doi:10.1152/jappl.1984.57.1.191
18. Kellogg DL. In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges. J Appl Physiol. 2006;100(5):1709-1718. doi:10.1152/japplphysiol.01071.2005
19. Johnson JM, Minson CT, Kellogg DL. Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Compr Physiol. 2014;4(1):33-89. doi:10.1002/cphy.c130015
20. Choi PJ, Brunt VE, Fujii N, Minson CT. New approach to measure cutaneous microvascular function: an improved test of NO-mediated vasodilation by thermal hyperemia. J Appl Physiol. 2014;117(3):277-283. doi:10.1152/japplphysiol.01397.2013
21. Hodges GJ, Cheung SS. The effect of repeated bouts of hyperaemia on sensory nerve-mediated cutaneous vasodilatation in humans. Microvasc Res. 2018;119:22-28. doi:10.1016/j.mvr.2018. 04.002
22. Charkoudian N, Eisenach JH, Atkinson JL, Fealey RD, Joyner MJ. Effects of chronic sympathectomy on locally mediated cutaneous vasodilation in humans. J Appl Physiol. 2002;92(2):685-690. doi:10.1152/japplphysiol.00758.2001
23. Minson CT, Berry LT, Joyner MJ. Nitric oxide and neurally mediated regulation of skin blood flow during local heating. J Appl Physiol. 2001;91(4):1619-1626. doi:10.1152/jappl.2001.91.4.1619
24. Naylor HL, Shoemaker JK, Brock RW, Hughson RL. Prostaglandin inhibition causes can increase in reactive hyperaemia after ischaemic exercise in human forearm. Clin Physiol. 1999;19(3): 211-220.
25. Dalle-Ave A, Kubli S, Golay S, Delachaux A, Liaudet L, Waeber B. Acetylcholine-induced vasodilation and reactive hyperemia are not affected by acute cyclo-oxygenase inhibition in human skin. Microcirculation. 2004;11(4):327-336. doi:10.1080/10739680490449268
Review
For citations:
Vasina E.Yu., Malakhova Z.I., Anosov I.D., Tishkov A.V., Mitreikin V.F., Vlasov T.D. Assessment of endothelium-dependent vasodilation in the clinic: what endothelial factor are we studying? "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2020;26(2):211-218. (In Russ.) https://doi.org/10.18705/1607-419X-2020-26-2-211-218