Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

Gut microbiota and hypertension

https://doi.org/10.18705/1607-419X-2020-26-6-620-628

Abstract

We reviewed the composition of gut microbiota (GM) in the presence of essential hypertension by analyzing Russian and foreign research publications from the database PubMed and Electronic Research eLibrary over the last 5 years from the position of evidence-based medicine. An analytical method has been used. A literature review indicated correlations between bacteria numbers and blood pressure level. Streptococcus spp., Klebsiella spp. and also such short-chain fatty acid producers as Bifidobacterium spp., Roseburia spp. and Faecalibacterium prausnitzii were shown to have inverse and direct links with blood pressure level in patients with essential hypertension. Lactobacillus spp. take part in blood pressure regulation in case of excessive salt consumption. The recent studies confirm the role of GM in the development of essential hypertension. Certain bacterial genus and species of GM producing short-chain fatty acids require further studies.

About the Authors

A. D. Kotrova
Saint-Petersburg State University
Russian Federation

Anna D. Kotrova, MD, PhD Student, Department of Internal Diseases

7–9 Universitetskaya Emb., St Petersburg, 199034



A. N. Shishkin
Saint-Petersburg State University
Russian Federation

Alexandr N. Shishkin, MD, PhD, DSc, Professor, Head, Department of Internal Diseases

St Petersburg 



E. I. Ermolenko
Saint-Petersburg State University; Institute of experimental medicine
Russian Federation

Elena I. Ermolenko, MD, PhD, DSc, Professor, SaintPetersburg State University, Head, Department of Molecular Microbiology

St Petersburg 



D. A. Saraykina
Saint-Petersburg State University
Russian Federation

Diana A. Saraykina, 6th year Student

St Petersburg 



V. A. Volovnikova
Saint-Petersburg State University
Russian Federation

Victoria A. Volovnikova, MD, PhD, Associate Professor, Department of Internal Diseases

St Petersburg 



References

1. Shenderov B.A. Medical microbial ecology: some of the outcomes and perspective of studies. Vestnik Rossiyskoi Akademii meditsinskih nauk. 2005, no. 12, pp. 13-17.(in Russ.)

2. Ardatskaya M.D., Minushkin O.N. Gut dysbacteriosis: the evolution of perspectives. Modern principles of diagnosis and pharmacological correction. Consilium Medicum. Prilogenie “Gastroenterologiya”. 2006, vol. 8, no. 2, pp.4-18.(in Russ.)

3. Grinevich V.B., Zaharchenko M.M. Modern concept of human gut microbiocenosis and ways of its disorders correction. Novye Sankt-Peterburgskiie vrachebnie vedomosti.2003, no.3, pp.13-20.(in Russ.)

4. Cani P.D.,Delzenne N.M. The role of the gut microbiota in energy metabolism and metabolic disease. Current Pharmaceutical Design. 2009, vol. 15, no. 13, pp. 1546–58.

5. Tilg H., Moschen A.R., Kaser A. Obesity and the Microbiota. Gastroenterology. 2009; 136(5), 1476–83.

6. Tsukumo D.M., Carvalho B.M., Carvalho-Filho M.A. et al. Translational research into gut microbiota: new horizons in obesity treatment. Arq Bras Endocrinol Metabol. 2009;53(2), 139-44.

7. Santisteban MM, Qi Y, Zubcevic J, et al. Hypertension-Linked Pathophysiological Alterations in the Gut. Circ Res. 2017;120(2):312–323. doi:10.1161/CIRCRESAHA.116.309006

8. Razavi, A.C., Potts, K.S., Kelly, T.N. et al. Sex, gut microbiome, and cardiovascular disease risk. Biol Sex Differ. 2019; 10, 29. doi:10.1186/s13293-019-0240-z

9. Wiedermann, C. J., Kiechl, S., Dunzendorfer, S.,et al. Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck Study. J. Am. Coll. Cardiol. 1999; 34:1975–1981. doi: 10.1016/S0735-1097(99)00448-9

10. Niebauer, J., Volk, H. D., Kemp, M. et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet. 1999; 353:1838–42. doi: 10.1016/S0140-6736(98)09286-1

11. Miller, M. A., McTernan, P. G., Harte, A. L.et al. Ethnic and sex differences in circulating endotoxin levels: a novel marker of atherosclerotic and cardiovascular risk in a British multi-ethnic population. Atherosclerosis.2009; 203: 494–502. doi: 10.1016/j.atherosclerosis.2008.06.018

12. Mitra, S., Drautz-Moses, D. I., Alhede, M.et al. In silico analyses of metagenomes from human atherosclerotic plaque samples. Microbiome.2015; 3:38. doi: 10.1186/s40168-015-0100-y

13. Yakovlev M.U. Elements of endotoxin theory in human physiology and pathology. Fiziol. Cheloveka. 2003,vol. 29, no.4, pp. 476–485.(in Russ.)

14. Kovalchuk L.V. The antimicrobial defensive role of TOLL-like receptors and defencines in woman urogenital tract. Zhurnal microbiologii, epidemiologii i immunobiologii. 2008, no.1, pp.46-50.(in Russ.)

15. Shishkin. Outstanding issues of metabolic syndrome. Meditsinskiy akademicheskiy zhurnal. Spetsial'nii vypusk. 2013, pp.85-86.(in Russ.)

16. Malhotra A., Kang B.P.S., Cheung S. et al. Angiotensin II promotes glucose-induced activation of cardiac protein kinase C isozymes and phosphorylation of troponin I. Diabetes. 2001; 50(8):1918–26. doi: 10.2337/diabetes.50.8.1918

17. Briones A.M., Cat A.N.D., Callera G.E. et al. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension. 2012; 59(5): 1069–78.

18. Yang T., Santisteban M.M., Rodriguez V. et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015; 65(6): 1331-40. doi:10.1161/HYPERTENSIONAHA.115.05315

19. Durgan D.J., Ganesh B.P., Cope J.L. et al. Role of the Gut Microbiome in Obstructive Sleep Apnea-Induced Hypertension. Hypertension. 2016; 67(2): 469-74. doi: 10.1161/HYPERTENSIONAHA.115.06672

20. Yan Q., Gu Y., Li X. et al. Alterations of the Gut Microbiome in Hypertension. Front Cell Infect Microbiol. 2017, vol.7 (381). Available at: https://www.frontiersin.org/articles/10.3389/fcimb.2017.00381/full. ( accessed 2 May 2019)

21. Li J., Zhao F., Wang Y. et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017; 5 (1):14. doi: 10.1186/s40168-016-0222-x.

22. Kim S, Goel R, Kumar A, et al. Imbalance

23. of gut microbiome and intestinal epithelial barrier dysfunction in patients

24. with high blood pressure. Clin Sci (Lond). 2018; 132: 701–718. doi:10.

25. /CS20180087.

26. Granger DN, Holm L, Kvietys P. The gastrointestinal circulation: Physiology and pathophysiology. Compr Physiol. 2015; 5:1541–1583. [PubMed: 26140727

27. Smiljanec K, Lennon SL. Sodium, hypertension, and the gut: does the gut

28. microbiota go salty? Am J Physiol Heart Circ Physiol. 2019; 317: H1173–H1182. doi:10.1152/ajpheart.00312.2019.

29. Threapleton DE, Greenwood DC, Evans CE et al. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2013;347:f6879. doi: 10.1136/bmj.f6879

30. Hendrik Bartolomaeus, Lajos Markó, Nicola Wilck et al.. Precarious Symbiosis Between Host and Microbiome in Cardiovascular Health. Hypertension. 2019;73:926-935. DOI: 10.1161/HYPERTENSIONAHA.119.11786.

31. Ma J. and Li H. The Role of Gut Microbiota in Atherosclerosis and Hypertension. Front. Pharmacol. 2018;9:1082.

32. doi: 10.3389/fphar.2018.01082

33. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19:29–41. doi: 10.1111/1462-2920.13589.

34. Sugahara H, Odamaki T, Fukuda S et al. Probiotic bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community. Sci Rep. 2015; 5:13548. [PubMed: 26315217]

35. Fukuda S, Toh H, Hase K et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011; 469:543–547. [PubMed: 21270894

36. Molostova A.S., Gusev A.S. , Shishkin A.N. et al. The features of gastric microbiocenosis associated with helicobacter infection. Materialy nauchnoi konferencii ''Vnutrennie bolezni kak integralnaya distsiplina sovremennoi meditsini''.​ Spb; Stsientia, 2018, pp.43-44.(in Russ.)

37. Roshanravan N, Mahdavi R, Alizadeh E, et al. The

38. effects of sodium butyrate and inulin supplementation on angiotensin

39. signaling pathway via promotion of Akkermansia muciniphila abundance

40. in type 2 diabetes; A randomized, double-blind, placebo-controlled trial. J

41. Cardiovasc Thorac Res. 2017; 9: 183–190. doi:10.15171/jcvtr.2017.32.

42. Bouter K, Bakker GJ, Levin E et al. Differential metabolic effects of

43. oral butyrate treatment in lean versus metabolic syndrome subjects. Clin

44. Transl Gastroenterol . 2018; 9: e155. doi:10.1038/s41424-018-0025-4.

45. Jie Z, Xia H, Zhong SL, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8:845. doi: 10.1038/ s41467-017-00900-1

46. Miranda PM, De Palma G, Serkis V et al. High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome. 2018;6:57. doi: 10.1186/s40168-018-0433-4

47. Wang C, Huang Z, Yu K et al. Highsalt diet has a certain impact on protein digestion and gut microbiota: a sequencing and proteome combined study. Front Microbiol. 2017;8:1838. doi: 10.3389/fmicb.2017.01838

48. Wilck N, Matus MG, Kearney SM, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551:585–589. doi: 10.1038/nature24628

49. Toral M, Gómez-Guzmán M, Jiménez R et al. The probiotic Lactobacillus coryniformis CECT5711 reduces the vascular pro-oxidant and pro-inflammatory status in obese mice. Clin Sci (Lond). 2014;127:33–45. doi: 10.1042/CS20130339

50. Khalesi S, Sun J, Buys N, Jayasinghe R. Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension. 2014;64:897–903. doi: 10.1161/ HYPERTENSIONAHA.114.0346

51. Quirós, A., Ramos, M., Muguerza, B., Delgado, M. A., Miguel, M., Aleixandre, A., & Recio, I. Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis. International Dairy Journal. 2007;17(1):33-41.

52. Yamamoto, N., Maeno, M., & Takano, T. Purification and characterization of an antihypertensive peptide from a yogurt-like product fermented by Lactobacillus helveticus CPN4. Journal of Dairy Science. 1999;82(7):1388-1393.

53. Qian, B., Xing, M., Cui, L., Deng, Y., Xu, Y., Huang, M., & Zhang, S.. Antioxidant, antihypertensive, and immunomodulatory activities of peptide fractions from fermented skim milk with Lactobacillus delbrueckii ssp. bulgaricus LB340. Journal of Dairy Research. 78(1):72-79.


Supplementary files

Review

For citations:


Kotrova A.D., Shishkin A.N., Ermolenko E.I., Saraykina D.A., Volovnikova V.A. Gut microbiota and hypertension. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2020;26(6):620-628. (In Russ.) https://doi.org/10.18705/1607-419X-2020-26-6-620-628

Views: 2660


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)