Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

Role of renin-angiotensin-aldosterone system in the interaction with coronavirus SARS-CoV-2 and in the development of strategies for prevention and treatment of new coronavirus infection (COVID-19)

https://doi.org/10.18705/1607-419X-2020-26-3-248-262

Abstract

The 2019 coronavirus pandemic (COVID-19), due to the new SARS-CoV-2 virus, represents the greatest global public health crisis and an unprecedented challenge to find effective ways to prevent and treat. In the active phase of a pandemic, early results allow these preventive measures to be implemented on a scale compatible with the pandemic. If the results are convincing, their value will be difficult to overestimate, since additional one or two outbreaks of this infection are expected. Clinical data is emerging rapidly from a large number of people afflicted with SARS-CoV-2, which should provide clinicians with accurate evidence of the effectiveness of different preventive and treatment methods. In particular, an active search is underway for cellular mechanisms that SARS-CoV-2 uses to penetrate tissues. These include information about the receptor of the angiotensin-converting enzyme receptor (ACE 2). SARS-CoV-2, a single-stranded envelope RNA virus, attaches to cells via a viral spike (S) protein that binds to the ACE 2. After binding to the receptor, the viral particle uses the receptors of the host cell and endosomes to enter the cells. Human type transmembrane serine protease 2 (TMPRSS 2) facilitates penetration into the cell via protein S. Once inside the cell, viral polyproteins are synthesized that encode the replicate transcriptase complex. The virus then synthesizes RNA through its RNA-dependent RNA polymerase. Structural proteins are synthesized leading to the completion of the assembly and release of viral particles. These stages of the virus life cycle provide potential targets for drug therapy. Current clinical and scientific data do not support discontinuation of ACE inhibitors or angiotensin receptor blockers in patients with COVID-19, and an ongoing discussion is addressed in this review.

About the Authors

A. Ya. Fisun
State Scientific Research and Test Institute of the Military Medicine of the Russian Defense Ministry
Russian Federation

Alexander Ya. Fisun, MD, PhD, DSc, Chief Researcher

St Petersburg



D. V. Cherkashin
S. M. Kirov Military Medical Academy
Russian Federation

Dmitry V. Cherkashin, MD, PhD, DSc, Head, Department of Naval Therapy

6 Academician Lebedev street, St Petersburg, 194044
Phone: 8(812)316–53–07



V. V. Tyrenko
S. M. Kirov Military Medical Academy
Russian Federation

Vadim V. Tyrenko, MD, PhD, DSc, Head, Department of Faculty Therapy

St Petersburg



C. V. Zhdanov
S. M. Kirov Military Medical Academy
Russian Federation

Constantine V. Zhdanov, MD, PhD, DSc, Head, Department of Infectious Diseases (with course of medical parasitology and tropical diseases)

St Petersburg



C. V. Kozlov
S. M. Kirov Military Medical Academy
Russian Federation

Constantine V. Kozlov, MD, PhD, DSc, Assistant Professor, Department of Infectious Diseases (with course of medical parasitology and tropical diseases)

St Petersburg



References

1. Shlyakhto EV, Konradi AO, Arutyunov G P, Arutyunov AG, Bautin AE, Boytsov SA et al. Guidelines for the diagnosis and treatment of circulatory diseases in the context of the COVID-19 pandemic. Russian Journal of Cardiology. 2020;25(3):1–21. doi:10.15829/1560-4071-2020-3-3801. In Russian.

2. McIntosh K, Perlmanin S. Coronaviruses, including severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS). Mandell, Douglas, and Bennett’s principles and practice of infectious diseases (eighth edition) ed. by Bennett JE, Dolin R, Blaser MJ Elsevier Inc. 2014:1928–1936.

3. Kulagina MG. Yushuk ND, Vengerov Yu J. Coronavirus infection; In Infectious Diseases: National Leadership. M.: GEOTAR-media, 2018. 759–768. In Russian.

4. Nidovirales. Virus Taxonomy. Ninth report of the International Committee on taxonomy of viruses. 2012; 784–794. doi.org/10.1016/B978-0-12-384684-6.00066-5

5. Menachery VD, Yount BLJr, Debbink K, Agnihothram S, Gralinski LE, Jessica AP et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med. 2015;21(12):1508–1513.

6. Communicable disease threats report, 9–15 February 2020, week 7. ECDC Published: 2020. [Electronic resource].URL: https://www.ecdc.europa.eu/en/publications-data/communicabledisease-threats-report-9-15-february-2020-week-7.

7. Shi Z, Hu Z. A review of studies on animal reservoirs of the SARS coronavirus. Virus Research. 2008;133(1):74–87.

8. Cyranoski D. Mystery deepens over animal source of coronavirus. Nature. 2020;579(7797):18–19. doi:10.1038/d41586020-00548-w

9. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S et al. Crystal structure of the 2019-nCoV spike receptor-binding domain bound with the ACE 2 receptor. Nature. 2020;581(7807):215–220. doi:10.Э1038/s41586-020-2180-5. BioRxiv. [Electronic resource]. URL: https://www.biorxiv.org/content/10.1101/2020.02.19.956235v1.full.pdf

10. New-type coronavirus causes pneumonia in Wuhan: expert. Xinhua. 2020. [Electronic resource]. URL: http://xinhuanet.com/english/2020–01/09/c_138690570.htm

11. Nicholas JB, Fletcher TE, Fowler R, Petri WA, Zhang X, Nir-Paz R. COVID-19. BMJ Best Practices. BMJ Publishing Group. 2020. [Electronic resource]. URL: https://bestpractice.bmj.com/topics/en-gb/3000168

12. Valitutto MT, Aung O, Tun KYN, Vodzak ME, Zimmerman D, Yu JH et al. Detection of novel coronaviruses in bats in Myanmar. PLoS ONE. 2020;15(4):e0230802. doi:10.1371/journal.pone.0230802

13. Ghebreyesus TA. WHO Director-General’s opening remarks at the media briefing on COVID-19 (11 March 2020). World Health Organization. 2020. [Electronic resource]. URL: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-atthe-media-briefing-on-covid-19-11-march-2020

14. Coronavirus disease 2019 (COVID - 19) Situation Report — 39. World Health Organization. 2020. [Electronic resource]. URL: https://www.who.int/emergencies/diseases/novelcoronavirus-2019/situation-reports

15. Sharing research data and findings relevant to the novel coronavirus (COVID-19) outbreak. 2020. [Electronic resource]. URL: https://wellcome.ac.uk/coronavirus-covid-19/open-data

16. Temporary methodological recommendations “Prevention, diagnosis and treatment of new coronavirus infection (COVID - 19)”. Version № 4 of 27.03.2020. URL: http://www.consultant.ru/cons/cgi/online.cgi?req=doc&base=LAW&n=348727&fld=134&dst=100001,0&nd=0.07612139410931884#024174583677047673. In Russian.

17. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–544. doi:10.1038/s41564-020-0695-z

18. Wu F, Zhao S, Yu B, Chen YM, Wang W, Hu Y et al. Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan, China. bioRxiv. 2020. doi.org/10.1101/2020.01.24.919183

19. Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci USA. 2020;117(17):9241–9243. doi:10.1073/pnas.2004999117

20. Tang X, Wu C, Li X, Song YH, Yao X, Wuv X et al. On the origin and continuing evolution of SARS-CoV-2. Nat Sci Rev. 2020. [Ahead of print, published online 3 March 2020]. doi.org/10.1093/nsr/nwaa036

21. Masters PS. Molecular biology of coronaviruses. Adv Virus Res. 2006;66:193–292. doi:10.1016/s0065-3527(06)66005-3

22. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS. J Virol. 2020;94(7): e00127–20. doi:10.1128/jvi.00127-20

23. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–286. doi.org/10.1038/S41586-020-2012-7

24. Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T et al. SARS-CoV-2 receptor ACE 2 and TMPRSS 2 are predominantly expressed in a transient secretory cell type in subsegmental bronchial branches. S Lukassen Human Cell Atlas. 2020. [Ahead of print, published online 30 March 2020]. doi:10.1101/2020.03.13.991455

25. Roisman GL, Danel CJ, Lacronique JG, Alhenc-Gelas F, Dusser DJ. Decreased expression of angiotensin-converting enzyme in the airway epithelium of asthmatic subjects is associated with eosinophil inflammation. J Allergy Clin Immunol. 1999;104(2Pt1):402–410.

26. Sebastian JL. Mckinney WP, Kaufman J, Youn MJ. Angiotensin-converting enzyme inhibitors and cough: prevalence in an outpatient medical clinic population. Chest. 1991;99(1):36–39.

27. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020. [Ahead of print, published online 25 March 2020]. doi:10.1001/jamacardio.2020.0950

28. Xiong TY, Redwood S, Prendergast B, Chen M. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur Heart J. 2020;41(19):1798–1800. doi.org/10.1093/eurheartj/ehaa231

29. Ghazi L, Drawz P. Advances in understanding the reninangiotensin-aldosterone system (RAAS) in blood pressure control and recent pivotal trials of RAAS blockade in heart failure and diabetic nephropathy. F1000Res. 2017;6: F1000 Faculty Rev-297. doi:10.12688/f1000research.9692.1

30. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8(4):e21. doi:10.1016/S22132600(20)30116-8

31. Hoffmann M, Kleine-Weber H, Krüger N, Müller M, Drosten C, Pöhlmann S et al. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE 2 and the cellular protease TMPRSS 2 for entry into target cells. BioRxiv. 2020. [Ahead of print, published online 31 January 2020]. doi.org/10.1101/2020.01.31.929042

32. Sommerstein R. Rapid response: preventing a covid-19 pandemic: ACE inhibitors as a potential risk factor for fatal Covid-19. Br Med J. 2020;368: m810. doi.org/10.1136/bmj.m810

33. Ferrario CM, Jessup JA, Chappell MC, Averill DB, Brosnihan KB, Tallant EA et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensinconverting enzyme 2. Circulation. 2005;111(20):2605–2610.

34. Liu X, Yang Y, Zhang C, Huang F, Wang F, Yuan J et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63(3):364–374.

35. Mosenifar Z, Jeng A, Kamangar N, Oppenheimer JJ, Amanullah S, Beeson MS et al. Viral pneumonia. Мedscape. 2020. [Published 22 January 2020]. [Electronic resource]. URL: https://emedicine.medscape.com/article/300455-overview

36. Perico L, Benigni A, Remuzzi G. Should COVID-19 concern nephrologists? Why and to what extent? The emerging impasse of angiotensin blockade. Nephron. 2020:1–9. doi:10.1159/000507305

37. Khan A, Benthin C, Zeno B, Albertson TE, Boyd J, Christie JD et al. A pilot clinical trial of recombinant human angiotensinconverting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017;21(1):234. doi:10.1186/s13054-017-1823-x

38. Gurwitz D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev Res. 2020;1(4): doi:10.1002/ddr.21656

39. Feng Z. The use of adjuvant therapy in preventing progression to severe pneumonia in patients with coronavirus disease 2019: a multicenter data analysis. MedRxiv. 2020. [Ahead of print, published online 10 April 2020]. doi.org/10.1101/2020.04.08.20057539

40. Beasley D. Two generic drugs being tested in U.S. in race to find coronavirus treatments. Reuters. 2020. [Electronic resource]. URL: https://www.reuters.com/article/us-healthcoronavirus-usa-treatments/two-generic-drugs-being-tested-in-us-in-race-to-find-coronavirus-treatments-idUSKBN2161QQ?feedType=nl&feedName=healthNews&utm_source=Sailthru&utm_medium=email&utm_campaign=US%202018%20Health%20Report%202020–03–19&utm_term=2018%20-%20US%20Health%20Report

41. Henry C, Zaizafoun M, Stock E, Ghamande S, Arroliga CA, White HD et al. Impact of angiotensin-converting enzyme inhibitors and statins on viral pneumonia. Proceedings (Baylor University. Medical Center). 2018;31(4):419–423. doi:10.1080/08998280.2018.1499293

42. HFSA/ACC/AHA statement addresses concerns re: using RAAS antagonists in COVID-19. 2020. [cited 2020 Mar 17]. [Electronic resource]. URL: https://www.acc.org/latest-incardiology/articles/2020/03/17/08/59/hfsa-acc-aha-statementaddresses-concerns-re-using-raas-antagonists-in-covid-19

43. Contini A. Virtual screening of an FDA approved drugs database on two COVID - 19 coronavirus proteins. Research Gate. 2020. [Published online 3 April 2020]. doi:10.26434/chemrxiv.11847381

44. Huang A, Huang A, Tang X, Wu H, Zhang J, Wang W et al. Virtual screening and molecular dynamics on blockage of key drug targets as treatment for COVID-19 сaused by SARS-CoV-2. Preprints. 2020. 2020030239. [Published online 15 March 2020].

45. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–1263.

46. Yan R, Zhang Y, Yingying G, Lu X, Qiang Z. Structural basis for the recognition of the 2019-nCoV by human ACE 2. BioRxiv. 2020. [Ahead of рrint, published online 20 February 2020]. doi.org/10.1101/2020.02.19.956946

47. Smith M, Smith JC. Repurposing therapeutics for COVID-19: supercomputer-based docking to the SARS-CoV-2 viral spike protein and viral spike protein-human ACE 2 interface. ChemRxiv. 2020. [Published online 11 March 2020]. [Electronic resource]. URL: https://chemrxiv.org/articles/Repurposing_Therapeutics_for_the_Wuhan_Coronavirus_nCov-2019_Supercomputer-Based_Docking_to_the_Viral_S_Protein_and_Human_ACE2_Interface/11871402

48. Richardson P, Griffin I, Tucker C, Smith DK, Oechsle O, Phelan A et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395(10223):e30–e31. doi:10.1016/S0140-6736(20)30304-4

49. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE 2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586–590. doi:10.1007/s00134020-05985-9

50. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B et al. A crucial role of angiotensin converting enzyme 2 (ACE 2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875–879.

51. Danser AHJ, Epstein M, Batlle D. Renin-angiotensin system blockers and the COVID - 19 pandemic at present there is no evidence to abandon renin-angiotensin system blockers. Hypertension. 2020;75(6):1382–1385. doi:10.1161/HYPERTENSIONAHA.120.15082


Review

For citations:


Fisun A.Ya., Cherkashin D.V., Tyrenko V.V., Zhdanov C.V., Kozlov C.V. Role of renin-angiotensin-aldosterone system in the interaction with coronavirus SARS-CoV-2 and in the development of strategies for prevention and treatment of new coronavirus infection (COVID-19). "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2020;26(3):248-262. (In Russ.) https://doi.org/10.18705/1607-419X-2020-26-3-248-262

Views: 2738


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)