COVID‑19 mathematical forecasting in the Russian Federation
https://doi.org/10.18705/1607-419X-2020-26-3-288-294
Abstract
About the Authors
I. A. LakmanRussian Federation
Irina A. Lakman, PhD in Technics, Associate Professor, Department of Computational Mathematics and Cybernetics
Ufa
A. A. Agapitov
Russian Federation
Aleksandr A. Agapitov, Junior Researcher
Ufa
L. F. Sadikova
Russian Federation
Liana F. Sadikova, Junior Researcher
Ufa
O. V. Chernenko
Russian Federation
Oleg V. Chernenko, MD, PhD, Deputy Director for Development
Ufa
S. V. Novikov
Russian Federation
Sergey V. Novikov, PhD in Economics, Acting Rector
Ufa
D. V. Popov
Russian Federation
Denis V. Popov, PhD in Technics, Associate Professor, Department of Computational Mathematics and Cybernetics
Ufa
V. N. Pavlov
Russian Federation
Valentin N. Pavlov, MD, PhD, DSc, Professor, Corresponding Member of the Russian Academy of Sciences, Rector
Ufa
D. F. Gareeva
Russian Federation
Diana F. Gareeva, MD, PhD, Cardiologist, Assistant, Department of Propaedeutics of Internal Diseases
Ufa
B. T. Idrisov
Russian Federation
Bulat T. Idrisov, MD, Assistant, Department of Infectious Diseases
Ufa
A. R. Bilyalov
Russian Federation
Azat R. Bilyalov, MD, PhD, Head, Department of Information Technologies, Associate Professor, Department of Traumatology and Orthopedics
Ufa
N. Sh. Zagidullin
Russian Federation
Naufal Sh. Zagidullin, MD, PhD, DSc, Professor, Director, Research Institute of Cardiology, Head, Department of Propaedeutics of Internal Diseases, Bashkir State Medical University
3 Lenin street, Ufa, 450008
References
1. Roosa K, Lee Y, Luo R, Kirpich A, Rothenberg R, Hyman JM, Yan P et al. Short-term forecasts of the COVID-19 epidemic in Guangdong and Zhejiang, China: February 13–23, 2020. J Clin Med. 2020;9(2):596. doi:10.3390/jcm9020596
2. Stübinger J, Schneider L Epidemiology of coronavirus COVID-19: forecasting the future incidence in different countries. Healthcare. 2020;8(2):99. doi:10.3390/healthcare8020099
3. Huang Y, Yang L, Dai H, Tian F, Chen K. Epidemic situation and forecasting of COVID-19 in and outside China. Bulletin of the World Health Organization. [Published online 16 March 2020]. doi:10.2471/BLT.20.255158
4. Sun D, Duan L, Xiong J, Wang D Modelling and forecasting the spread tendency of the COVID-19 in China. BMC Infectious Diseases. [Published online 8 May 2020]. doi:10.21203/rs.3.rs-26772/v1
5. Avila E, Canto FJA Fitting parameters of SEIR and SIRD models of COVID-19 pandemic in Mexico. [Published online 15 April 2020]. [Electronic resource]. URL: https://www.researchgate.net/publication/341165247_Fitting_parameters_of_SEIR_and_SIRD_models_of_COVID-19_pandemic_in_Mexico#fullTextFileContent
6. Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Public Health 2020;5(5):e261–270. doi:10.1016/S2468-2667(20)30073-6
7. Benvenuto D, Giovanetti M, Vassallo L, Angeletti S, Ciccozzi M Application of the ARIMA model on the COVID-2019 epidemic dataset. Data Brief. 2020:1053403. [Ahead of print, published online 26 February 2020]. doi:10.1016/j.dib.2020.105340
8. Dehesh T, Mardani-Fard HA, Dehesh P Forecasting of COVID-19 Confirmed Cases in Different Countries with ARIMA Models. MedRxiv. [Published online 18 March 2020]. doi:10.1101/2020.03.13.20035345
9. Yonar H, Yonar A, Tekindal MA, Tekindal M. Modeling and forecasting for the number of cases of the COVID-19 pandemic with the curve estimation models, the Box-Jenkins and exponential smoothing methods. Euras J Med Oncol. 2020;4(2):160–165. doi:10.14744/ejmo.2020.28273
10. Ribeiro MHDM, Gomes da Silva R, Mariani VC, Coelho Ld S. Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil. Chaos, Solitons and Fractals. 2020;135: 109853. doi:10.1016/j.chaos.2020.109853
11. Zhang Z, Wang X, Gong H, Liu X, Chen H, Chu Z et al. Daily tracking and forecasting of the global COVID-19 pandemic trend using holt–winters exponential smoothing. Lancet. [Published online 15 April 2020]. https://dx.doi.org/10.2139/ssrn.3564413
12. Abdulmajeed K, Adeleke M, Popoola L. Online forecasting of COVID-19 cases in Nigeria using limited data. Data Brief. 2020;30:105683. doi:10.1016/j.dib.2020.105683
13. Elmousalami HH, Hassanien AE. Day level forecasting for coronavirus disease (COVID-19) spread: analysis, modeling and recommendations. [Published online 15 March 2020]. [Electronic resource]. URL: https://arxiv.org/ftp/arxiv/papers/2003/2003.07778.pdf
14. Petropoulos F, Makridakis S Forecasting the novel coronavirus COVID-19. PLoS ONE 15(3):e0231236. doi:10.1371/journal.pone.0231236
15. Zagidullin N, Motloch LJ, Gareeva D, Hamitova A, Lakman I, Krioni I et al. Combining novel biomarkers for risk stratification of two-year cardiovascular mortality in patients with ST-elevation myocardial infarction. J Clin Med. 2020;9(2):550. doi:10.3390/jcm9020550
Review
For citations:
Lakman I.A., Agapitov A.A., Sadikova L.F., Chernenko O.V., Novikov S.V., Popov D.V., Pavlov V.N., Gareeva D.F., Idrisov B.T., Bilyalov A.R., Zagidullin N.Sh. COVID‑19 mathematical forecasting in the Russian Federation. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2020;26(3):288-294. https://doi.org/10.18705/1607-419X-2020-26-3-288-294