Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

The role of AMPA-receptors
in mechanisms of neuroprotective effect of cerebral ischemic postconditioning

https://doi.org/10.18705/1607-419X-2015-21-2-155-163

Abstract

Objective. The purpose of the study is to explore the role of AMPA receptors in the neuroprotective effect of ischemic postconditioning (IРost) in the model of reversible global forebrain ischemia in Mongolian gerbils. Design and methods. Reversible global cerebral ischemia was induced by bilateral occlusion of common carotid arteries in Mongolian gerbils for 7 minutes. IРost was induced by three 15-s episodes of reperfusion/reocclusion. Antagonist of AMPA receptors NBQX was administered intraperitoneally at 2nd minute of ischemia at a dose of 30 mg/kg. In the early and delayed reperfusion period, the number of viable neurons in the CA1, CA2, CA, and CA4 fields of the hippocampus was estimated. Results. Reversible 7 minutes ischemia followed by 48 hours of reperfusion resulted in a significant reduction in the number of viable neurons in the fields CA1 and СА3 of the hippocampus, while in the late reperfusion period a significant reduction in the number of viable neurons was observed in fields CA1, СА3 and CA4. Application of IРost has led to an increase in the number of viable neurons in fields CA1 and CA3 in the early reperfusion period and in fields CA1, CA3 and CA4 — in delayed period. AMPA receptor antagonist NBQX attenuated neuroprotective effect of IPost to a level comparable with the effect of a separate application of NBQX for neurons in the CA1 and CA3 fields of the hippocampus. Conclusions. Along with other mechanisms, the activation of AMPA receptors might be implicated in the mechanisms of cerebral IPost. 

About the Authors

N. S. Shcherbak
First Pavlov State Medical University of St. Petersburg, St Petersburg, Russia North-West Federal Medical Research Centre, St Petersburg, Russia
Russian Federation

MD, PhD, Senior Researcher, Institute of Cardiovascular Diseases, First Pavlov State Medical University of St. Petersburg, Leading Researcher, Laboratory of Nanotechnology, Institute of Experimental Medicine, Federal North-West Medical Research Centre; 



M. M. Galagudza
First Pavlov State Medical University of St. Petersburg, St Petersburg, Russia North-West Federal Medical Research Centre, St Petersburg, Russia
Russian Federation

MD, PhD, Head, Institute of Experimental Medicine, Federal North-West Medical Research Centre, Professor, Department of Pathophysiology First Pavlov State Medical University of St. Petersburg;



G. Yu. Yukina
First Pavlov State Medical University of St. Petersburg, St Petersburg, Russia
Russian Federation

PhD, Head, Laboratory of Pathomorphology Research Center, First Pavlov State Medical University of St. Petersburg; 



E. R. Barantsevich
First Pavlov State Medical University of St. Petersburg, St Petersburg, Russia North-West Federal Medical Research Centre, St Petersburg, Russia
Russian Federation

MD, PhD, Professor, Head, Department of Neurology and Manual Medicine FPO, First Pavlov State Medical University of St. Petersburg, Head, Research Department of Angioneurology, Federal North-West Medical Research Centre;



V. V. Thomson
First Pavlov State Medical University of St. Petersburg, St Petersburg, Russia
Russian Federation

MD, PhD, Professor, Director of Research Center, Federal North-West Medical Research Centre; 



E. V. Shlyakhto
First Pavlov State Medical University of St. Petersburg, St Petersburg, Russia North-West Federal Medical Research Centre, St Petersburg, Russia
Russian Federation

MD, PhD, Professor, Academician of RAS, General Director, Federal North-West Medical Research Centre, Head, Department of Internal Diseases #1, First Pavlov State Medical University of St. Petersburg



References

1. Шляхто Е. В., Баранцевич Е. Р., Щербак Н. С., Галагудза М. М. Молекулярные механизмы формирования ишемической толерантности головного мозга. Часть 1. Вестник РАМН. 2012;(6):42–50. [Shlyakhto EV, Barantsevich ER, Shcherbak NS, Galagudza MM. Molecular mechanisms of development of cerebral tolerance to ischemia. Part 1. Vestn Ross Akad Med Nauk. 2012; (6):42–50. In Russian].

2. Zhao H. Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. J Cereb Blood Flow Metab. 2009;29(5):873–85.

3. Harukuni I, Bhardwaj A. Mechanisms of brain injury after global cerebral ischemia. Neurol Clin. 2006;24(1):1–21.

4. Sheardown MJ, Suzak PD, Nordholm L. AMPA but not NMDA, receptor antagonism is neuroprotective in gerbil ischemia, even when delayed 24 h. Eur J Pharmacol. 1993; 236(3):347–53.

5. Kawasaki-Yatsugi S, Yatsugi S, Koshiya K, ShimizuSasamata M. Neuroprotective effect of YM90K, an AMPA-receptor antagonist, against delayed neuronal death induced by transient global cerebral ischemia in gerbils and rats. Jpn J Pharmacol. 1997;74(3):253–260.

6. Gorter JA, Petrozzino JJ, Aronica EM, Rosenbaum DM, Opitz T, Bennett MV et al. Global ischemia induces downregulation of GluR2 mRNA and increases AMPA receptor-mediated Ca2+ influx in hippocampal CA1 neurons of gerbil. J Neurosci. 1997; 17(16):6179–88.

7. Loskota WJ, Lomax P, Verity MA. A stereotaxic atlas of the mongolian gerbil brain. Ann Arbor Science Publishers. Ann Arbor, Mich. USA. 1974.

8. Kirino T, Tamura A, Sano K. A reversible type of neuronal injury following ischemia in the gerbil hippocampus. Stroke. 1986;17(3):455–459.

9. Stummer W, Weber K, Tranmer B, Baethmann A, Kempski O. Reduced mortality and brain damage after locomotor activity in gerbil forebrain ischemia. Stroke. 1994;25(9):1862– 1869.

10. Radenovic L, Selakovic V, Janac B, Andjus PR. Neuroprotective efficiency of NMDA receptor blockade in the striatum and CA3 hippocampus after various durations of cerebral ischemia in gerbils. Acta Physiol Hung. 2011; 98 (1):32–44.

11. Buchan AM, Li H, Cho S, Pulsinelli WA. Blockade of the AMPA receptor prevents CA I hippocampal injury following severe but transient forebrain i schemia in adult rats. Neurosci Lett. 1991;132(2):255–258.

12. Chittajallu R, Braighwaite SP, Clarke VR, Henley JM. Kainate receptors: units, synaptic localization and function. Trends Pharmacol Sci. 1999;20 (1):26–35.

13. Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci. 1994;17:31–108.

14. Wenthold RJ, Petralia RS, Blahos J, Niedzielski AS. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J Neurosci. 1996;16 (6):1982–1989.

15. Hazell AS. Excitotoxic mechanisms in stroke: an update of concepts and treatment strategies. Neurochem Int. 2007;50 (7–8):941–953.

16. Hollmann M, Hartley M, Heinemann S. Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science. 1991;252(5007):851–853.

17. Burnashev N. Calcium permeability of glutamate-gated channels in the central nervous system. Curr Opin Neurobiol. 1996;6(3):311–317.

18. Geiger JR, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron. 1995;15(1):193– 204.

19. Peng PL, Zhong X, TuW, Soundarapandian MM, Molner P, Zhu D et al. ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia. Neuron. 2006;49 (5):719–733.

20. Щербак Н. С., Галагудза М. М., Кузьменков А. Н., Овчинников Д. А., Юкина Г. Ю., Баранцевич Е. Р. Морфофункциональные изменения зоны СА1 гиппокампа у монгольских песчанок при применении ишемического посткондиционирования. Морфология. 2012;142(5):12–16. [Shcherbak NS, Galagudza MM, Kuz’menkov AN, Ovchinnikov DA, Yukina GYu, Barantsevich ER. Morpho-functional changes of hippocampal CA1 area in Mongolian gerbils after ischemic postconditioning. Morfologiia. 2012;142(5):12–16. In Russian]

21. Andine P, Jacobson I, Hagberg H. Enhanced calcium up take by CA1 pyramidal cell dendrites in the postischemic phase despite subnormal evoked field potentials: Excitatory amino acid receptor dependency and relationship to neuronal damage. J Cereb Blood Flow Metab. 1992;12(5):773–783.

22. Aoyagi A, Saito H, Abe K, Nishiyama N. Early impairment and late recovery of synaptic transmission in the rat dentate gyrus following transient forebrain ischemia in vivo. Brain Res. 1998;799:130–137.

23. BernabeuR,SharpFR. NMDAandAMPA/kainateglutamate receptors modulate dentate neurogenesis and CA3 synapsin-I in normal and ischemic hippocampus. J Cereb Blood Flow Metab. 2000;20(12):1669–1680.

24. Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 2009;8:398–412.

25. Bond A, Lodge D, Hicks CA, Ward MA, O’Neill MJ. NMDA receptor antagonism, but not AMPA receptor antagonism attenuates induced ischaemic tolerance in the gerbil hippocampus. Eur J Pharmacol. 1999;380(2–3):91–99.

26. Ding ZM, Wu B, Zhang WQ, Lu XJ, Lin YC, Genc YJ et al. Neuroprotective effects of ischemic preconditioning and postconditioning on global brain ischemia in rats through the same effect on inhibition of apoptosis. Int J Mol Sci. 2012;13 (5):6089–6101.


Review

For citations:


Shcherbak N.S., Galagudza M.M., Yukina G.Yu., Barantsevich E.R., Thomson V.V., Shlyakhto E.V. The role of AMPA-receptors
in mechanisms of neuroprotective effect of cerebral ischemic postconditioning. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2015;21(2):155-163. (In Russ.) https://doi.org/10.18705/1607-419X-2015-21-2-155-163

Views: 1191


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)