Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

Neurophysiological justification of the G. F. Lang hypothesis about the occurrence of essential hypertension

https://doi.org/10.18705/1607-419X-2021-27-5-499-508

Abstract

This article is an analysis of modern data on the morphological, functional and neurochemical organization of the central mechanisms of blood circulation regulation, the violation of which can cause the development of essential hypertension. The data indicating the validity of the hypothesis of G.F. Lang that prolonged emotional stress leads to a violation of the neuronal activity of the hypothalamus structures are presented. The article describes the morphological connections of the hypothalamus with the neurons of the ventrolateral region of the medulla oblongata and the structures of the spinal cord that provide neurogenic vascular tone. The evidence of convergence of axons of neurons of the paraventricular nucleus of the hypothalamus on the preganglionic neurons of the spinal cord is presented. Neurochemical processes in the vasomotor center of the medulla oblongata are considered, morphological changes of preganglionic sympathetic neurons in experimental arterial hypertension are indicated.

About the Authors

E. V. Shlyakhto
Almazov National Medical Research Centre; Pavlov University

Eugene V. Shlyakhto, MD, PhD, DSc, Professor, Academician of the Russian Academy of Sciences, General Director

15 Parkhomenko avenue, St Petersburg, 194156



V. A. Tsyrlin
Almazov National Medical Research Centre

Vitaliy A. Tsyrlin, MD, Ph D. DSc, Professor, Chief Researcher, Department of Experimental Physiology and Pharmacology, Preclinical and Translational Research Centre

15 Parkhomenko avenue, St Petersburg, 194156



N. V. Kuzmenko
Almazov National Medical Research Centre; Pavlov University
Russian Federation

Natalia V. Kuzmenko, PhD, Senior Researcher, Department of Experimental Physiology and Pharmacology, Preclinical and Translational Research Centre; Researcher, Blood Circulation Biophysics Laboratory

15 Parkhomenko avenue, St Petersburg, 194156



M. G. Pliss
Almazov National Medical Research Centre; Pavlov University

Mikhail G. Pliss, PhD, Head, Department of Experimental Physiology and Pharmacology, Preclinical and Translational Research Centre; Head, Blood Circulation Biophysics Laboratory

15 Parkhomenko avenue, St Petersburg, 194156



References

1. Lang G. F. Hypertension. L., Medgiz, 1950, 496 р. In Russian.

2. Shlyakhto E. V., Konradi A. O., Tsyrlin V. A. Autonomic nervous system and arterial hypertension. St. Petersburg, LLC "Medical publishing house", 2008, 312 p. In Russian.

3. Valdman A.V. Neuropharmacology of central vascular regulation tonusa. L., Medicine, 1976, 326 р. In Russian.

4. Schlager G. Selection for blood pressure levels in mice. Genetics 1974;76(3): 537- 549.

5. Okamoto K., Aoki K. Development of a strain of spontaneously hypertensive rats. Jap.circulat.J.,1963;.27: 282-293.

6. Okamoto K. Spontaneous hypertensive in rats. Exp.path.1969; 7: 227- 269.

7. Saper C.B., Loewy A.D., Swanson L.W., Cowan W.M. Direct hypothalamo-autonomic connections. Brain Res. 1976; 117: 305–312. doi:10.1016/0006- 8993(76)90738-1

8. Cechetto D.F., Saper C.B. Neurochemical organization of the hypothalamic projection to the spinal cord in the rat. J. Comp. Neurol. 1988; 272(4): 579-604. doi:10.1002/cne.902720410

9. Strack A.M., Sawyer W.B., Hughes J.H., Platt K.B., Loewy A.D. A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal pseudorabies viral infections. Brain Res. 1989;491: 156–162. doi:10.1016/0006-8993(89)90098-X.[PubMed]

10. Coote J.H. A role for the paraventricular nucleus of the hypothalamus in the autonomic control of heart and kidney. Exp. Physiol. 2005; 90: 169–173.

11. 11 Hallbeck M., Larhammar D., Blomqvist A. Neuropeptide expression in rat paraventricular hypothalamic neurons that project to the spinal cord. J. Comp.Neurol .2001; 433: 222–238. doi:10.1002/cne.1137

12. Benarroch E.E. Paraventricular nucleus, stress response, and cardiovascular disease. Clin. Auton. Res. 2005; 15: 254–263. doi:10.1007/s10286-005-0290-7

13. Pyner S.J. Neurochemistry of the paraventricular nucleus of the hypothalamus: implications for cardiovascular regulation. Chem. Neuroanat. 2009; 38(3):197-208. doi: 10.1016/j.jchemneu.2009.03.005

14. Motawei K., Pyner S., Ranson R.N., Kamel M., Coote J.H. Terminals of paraventricular spinal neurones are closely associated with adrenal medullary sympathetic preganglionic neurones: immunocytochemical evidence for vasopressin as a possible neurotransmitter in this pathway. Exp Brain Res. 1999; 126(1): 68-76. doi:10.1007/s002210050717

15. Sentagotai Ya., Flerko B., Mesh B., Halas B. Hypothalamic regulation of the anterior pituitary gland. Hungarian Academy of Sciences, Budapest, 1968, 353 p.

16. Dampney R.A., Michelini L.C., Li D.P., Pan H.L. Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states. Am J Physiol Heart Circ Physiol. 2018;315(5):H1200-H1214. doi: 10.1152/ajpheart.00216.2018

17. Kunkler P.E., Hwang B.H. Lower GABAA receptor binding in the amygdala and hypothalamus of spontaneously hypertensive rats. Brain Res Bull. 1995;36(1):57-61. doi: 10.1016/0361-9230(94)00164-v

18. Qiao X., Zhou J.J., Li D.P., Pan H.L. Src Kinases Regulate Glutamatergic Input to Hypothalamic Presympathetic Neurons and Sympathetic Outflow in Hypertension. Hypertension. 2017;69(1):154-162. doi: 10.1161/HYPERTENSIONAHA.116.07947

19. Gabor A., Leenen F.H. Central neuromodulatory pathways regulating sympathetic activity in hypertension. J Appl Physiol (1985). 2012;113(8):1294-303. doi: 10.1152/japplphysiol.00553.2012

20. Koba S., Hanai E., Kumada N., Kataoka N., Nakamura K., Watanabe T. Sympathoexcitation by hypothalamic paraventricular nucleus neurons projecting to the rostral ventrolateral medulla. J Physiol. 2018;596(19):4581-4595. doi: 10.1113/JP276223

21. Basting T., Xu J., Mukerjee S., Epling J., Fuchs R., Sriramula S., Lazartigues E. Glutamatergic neurons of the paraventricular nucleus are critical contributors to the development of neurogenic hypertension. J Physiol. 2018; 596(24):6235-6248. doi: 10.1113/JP276229

22. Soriano J.E., Scott B.A., Rosentreter R.E., Vaseghi B. The sympathetic role of glutamatergic paraventricular nucleus neurons in blood pressure regulation. J Physiol. 2019;597(6):1433-1434. doi: 10.1113/JP277558

23. Ali D.W., Salter M.W. NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr Opin Neurobiol. 2001;11(3):336-42. doi: 10.1016/s0959-4388(00)00216-6

24. Allen A.M. Inhibition of the hypothalamic paraventricular nucleus in spontaneously hypertensive rats dramatically reduces sympathetic vasomotor tone. Hypertension. 2002;39(2):275-80. doi: 10.1161/hy0202.104272

25. Li D.P., Yang Q., Pan H.M., Pan H.L. Pre- and postsynaptic plasticity underlying augmented glutamatergic inputs to hypothalamic presympathetic neurons in spontaneously hypertensive rats. J Physiol. 2008;586(6):1637-47. doi: 10.1113/jphysiol.2007.149732

26. Li D.P., Pan H.L. Increased group I metabotropic glutamate receptor activity in paraventricular nucleus supports elevated sympathetic vasomotor tone in hypertension. Am J Physiol Regul Integr Comp Physiol. 2010;299(2):R552-61. doi: 10.1152/ajpregu.00195.2010

27. Ye Z.Y., Li D.P., Li L., Pan H.L. Protein kinase CK2 increases glutamatergic input in the hypothalamus and sympathetic vasomotor tone in hypertension. J Neurosci. 2011;31(22):8271-9. doi: 10.1523/JNEUROSCI.1147-11.2011

28. Ito S., Komatsu K., Tsukamoto K., Sved A.F. Excitatory amino acids in the rostral ventrolateral medulla support blood pressure in spontaneously hypertensive rats. Hypertension. 2000;35(1 Pt 2):413-7. doi: 10.1161/01.hyp.35.1.413

29. Ito S., Komatsu K., Tsukamoto K., Sved A.F. Tonic excitatory input to the rostral ventrolateral medulla in Dahl salt-sensitive rats. Hypertension. 2001;37(2):687-91

30. Colombari E., Sato M.A., Cravo S.L., Bergamaschi C.T., Campos R.R. Jr, Lopes O.U. Role of the medulla oblongata in hypertension. Hypertension. 2001;38(3 Pt 2):549-54. doi: 10.1161/01.hyp.38.3.549

31. Bergamaschi C., Campos R.R., Schor N., Lopes O.U. Importance of rostral ventrolateral medulla in rats with Goldblatt hypertension. Fundam Clin Pharmacol. 1997; 11:92S–93S

32. Huber M.J., Chen Q.H., Shan Z. The Orexin System and Hypertension. Cell Mol Neurobiol. 2018;38(2):385-391. doi: 10.1007/s10571-017-0487-z

33. Geerling J.C., Shin J.W., Chimenti P.C., Loewy A.D. Paraventricular hypothalamic nucleus: axonal projections to the brainstem. J Comp Neurol. 2010;518(9):1460-99. doi: 10.1002/cne.22283

34. Guyenet P.G., Stornetta R.L., Holloway B.B., Souza G.M.P.R., Abbott S.B.G. Rostral Ventrolateral Medulla and Hypertension. Hypertension. 2018;72(3):559-566. doi: 10.1161/HYPERTENSIONAHA.118.10921

35. Li C., Horn J.P. Physiological classification of sympathetic neurons in the rat superior cervical ganglion. J Neurophysiol. 2006;95(1):187-95. doi: 10.1152/jn.00779.2005

36. Minson J.B., Arnolda L.F., Llewellyn-Smith I.J. Neurochemistry of nerve fibers apposing sympathetic preganglionic neurons activated by sustained hypotension. J Comp Neurol. 2002;449(4):307-18. doi: 10.1002/cne.10282

37. Kumar N.N., Allen K., Parker L., Damanhuri H., Goodchild A.K. Neuropeptide coding of sympathetic preganglionic neurons; focus on adrenally projecting populations. Neuroscience. 2010;170(3):789-99. doi: 10.1016/j.neuroscience.2010.07.047

38. Bernstein-Goral H., Bohn M.C. Ontogeny of adrenergic fibers in rat spinal cord in relationship to adrenal preganglionic neurons. J Neurosci Res. 1988;21(2-4):333-51. doi: 10.1002/jnr.490210226

39. Llewellyn-Smith I.J. Anatomy of synaptic circuits controlling the activity of sympathetic preganglionic neurons. J Chem Neuroanat. 2009;38(3):231-9. doi: 10.1016/j.jchemneu.2009.06.001

40. McNair C.J., Baxter G.J., Kerr R., Maxwell D.J. Glutamate receptor subunits associated with rat sympathetic preganglionic neurons. Neurosci Lett. 1998;256(1):29-32. doi: 10.1016/s0304-3940(98)00747-2

41. Hosoya Y., Matsukawa, Okado N., Sugiura Y., Kohno K. Oxytocinergic innervation to the upper thoracic sympathetic preganglionic neurons in the rat. A light and electron microscopical study using a combined retrograde transport and immunocytochemical technique. Exp Brain Res. 1995;107(1):9-16. doi: 10.1007/BF00228011

42. Whyment A.D., Blanks A.M., Lee K., Renaud L.P., Spanswick D. Histamine excites neonatal rat sympathetic preganglionic neurons in vitro via activation of H1 receptors. J Neurophysiol. 2006;95(4):2492-500. doi: 10.1152/jn.01135.2004

43. Minoura Y., Onimaru H., Iigaya K., Homma I., Kobayashi Y. Electrophysiological responses of sympathetic preganglionic neurons to ANG II and aldosterone. Am J Physiol Regul Integr Comp Physiol. 2009;297(3):R699-706. doi: 10.1152/ajpregu.00041.2009

44. McAllen R.M., Häbler H.J., Michaelis M., Peters O., Jänig W. Monosynaptic excitation of preganglionic vasomotor neurons by subretrofacial neurons of the rostral ventrolateral medulla. Brain Res. 1994;634(2):227-34. doi: 10.1016/0006-8993(94)91925-9

45. Rexed B. A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol. 1954;100(2):297-379. doi: 10.1002/cne.901000205

46. Deuchars S.A. How sympathetic are your spinal cord circuits? Exp Physiol. 2015;100(4):365-71. doi: 10.1113/EP085031

47. Moon E.A., Goodchild A.K., Pilowsky P.M. Lateralisation of projections from the rostral ventrolateral medulla to sympathetic preganglionic neurons in the rat. Brain Res. 2002;929(2):181-90. doi: 10.1016/s0006-8993(01)03388-1

48. Ranson R.N., Motawei K., Pyner S., Coote J.H. The paraventricular nucleus of the hypothalamus sends efferents to the spinal cord of the rat that closely appose sympathetic preganglionic neurones projecting to the stellate ganglion. Exp Brain Res. 1998;120(2):164-72. doi: 10.1007/s002210050390

49. Forehand C.J. Morphology of sympathetic preganglionic neurons in the neonatal rat spinal cord: an intracellular horseradish peroxidase study. J Comp Neurol. 1990;298(3):334-42. doi: 10.1002/cne.902980306

50. Wu L., Chang H.H., Havton L.A. The soma and proximal dendrites of sympathetic preganglionic neurons innervating the major pelvic ganglion in female rats receive predominantly inhibitory inputs. Neuroscience. 2012;217:32-45. doi: 10.1016/j.neuroscience.2012.05.005

51. Tang F.R., Tan C.K., Ling E.A. A comparative study by retrograde neuronal tracing and substance P immunohistochemistry of sympathetic preganglionic neurons in spontaneously hypertensive rats and Wistar-Kyoto rats. J Anat. 1995;186 ( Pt 1):197-207

52. Folkow B., Rubinstein E.H. Cardiovascular effects of acute and chronic stimulations of the hypothalamus defence area in the rat. Acta physiol. scand.1966; 68: 48 – 57

53. Sudakov K.V. Emotional stress as a leading factor of pathogenesis arterial hypertension. Pathol. physiol. exp. therap. 1975; 1: 3-12. In Russian.


Supplementary files

Review

For citations:


Shlyakhto E.V., Tsyrlin V.A., Kuzmenko N.V., Pliss M.G. Neurophysiological justification of the G. F. Lang hypothesis about the occurrence of essential hypertension. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2021;27(5):499-508. (In Russ.) https://doi.org/10.18705/1607-419X-2021-27-5-499-508

Views: 2194


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)