Preview

Артериальная гипертензия

Расширенный поиск

Биологические и патофизиологические аспекты использования сортилина в диагностике атеросклероза

https://doi.org/10.18705/1607-419X-2021-27-4-402-408

Аннотация

Проявления субклинического атеросклероза служат независимым предиктором повышенного кардиоваскулярного риска, в том числе и у пациентов с артериальной гипертензией. В статье представлен обзор ключевых исследований по изучению патогенетической роли в атерогенезе и стратификации сердечно-сосудистого риска (ССР) пептида сортилина, который принадлежит к семейству вакуолярных сортирующих рецепторов типа I. Циркулирующий сортилин, действуя одновременно на липидные и нелипидные патогенетические механизмы атерогенеза, может служить ранним биомаркером ССР, что позволяет признать его одним из основных игроков в различных процессах атерогенеза и потенциальной терапевтической мишенью для коррекции дислипидемии и атеросклероза на субклиническом уровне.

Об авторах

И. В. Губарева
Федеральное государственное бюджетное образовательное учреждение высшего образования Самарский государственный медицинский университет Министерства здравоохранения Российской Федерации
Россия

Губарева Ирина Валерьевна — доктор медицинских наук, доцент, заведующая кафедрой внутренних болезней ФГБОУ ВО Самарский ГМУ Минздрава России.

Ул. Чапаевская, д.89, Самара, 443099



Ю. Ю. Вуколова
Федеральное государственное бюджетное образовательное учреждение высшего образования Самарский государственный медицинский университет Министерства здравоохранения Российской Федерации
Россия

Вуколова Юлия Юрьевна — ассистент кафедры внутренних болезней ФГБОУ ВО Самарский ГМУ Минздрава России.

Ул. Чапаевская, д.89, Самара, 443099



Список литературы

1. Бойцов С. А., Шальнова С. А., Деев А. Д. Эпидемиологическая ситуация как фактор, определяющий стратегию действий по снижению смертности в Российской Федерации. Терапевтический архив. 2020;92(1):4–9. doi:10.26442/00403660.2020.01.000510

2. Метельская В. А., Шальнова С. А., Деев А. Д., Перова Н. В., Гомыранова М. В., Литинская О. А. и др. Анализ распространенности показателей, характеризующих атерогенность спектра липопротеинов, у жителей Российской Федерации (по данным исследования ЭССЕ-РФ). Профилактическая медицина. 2016;19(1):15–23. doi:10.17116/profmed201619115-23

3. Кобалава Ж. Д., Конради А. О., Недогода С. В., Шляхто Е. В., Арутюнов Г. П., Баранова Е. И. и др. Артериальная гипертензия у взрослых. Клинические рекомендации. 2020. Российский кардиологический журнал. 2020;25(3):3786. doi:10.15829/1560-4071-2020-3-3786

4. Weissler AM, Traditional risk factors for coronary heart disease. JAMA. 2004;291(3):299–300.

5. Conroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, De Backer G et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE poject. Eur Heart J. 2003;24(11):987–1003.

6. Goff DC, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB, Gibbons R et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):2935–2959.

7. Langlois MR. Laboratory approaches for predicting and managing the risk of cardiovascular disease: postanalytical opportunities of lipid and lipoprotein testing. Clin Chem Lab Med. 2012;50(7):1169–1181.

8. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010;21(1):128–138.

9. Zethelius B, Berglund L, Sundstrom J, Ingelsson E, Basu S, Larsson A et al. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med. 2008;358(20):2107–2116.

10. Trabjerg E, Abu-Asad N, Wan Z, Kartberg F, Christensen S, Rand KD. Investigating the conformational response of the sortilin receptor upon binding endogenous peptide- and protein ligands by HDX–MS. Structure. 2019;27(7):1103–1113.e3. doi:10.1016/j.str.2019.04.006

11. Blondeau N, Béraud-Dufour S, Lebrun P, Hivelin C, Coppola T. Sortilin in glucose homeostasis: from accessory protein to key player? Front Pharmacol. 2019;9:1561. doi:10.3389/fphar.2018.01561

12. Andersen OM, Rudolph IM, Willnow TE. Risk factor SORL1: from genetic association to functional validation in Alzheimer’s disease. Acta Neuropathol. 2016;132(5):653–665. doi:10.1007/s00401-016-1615-4

13. Ouyang S, Jia B, Xie W, Yang J, Lv Y. Mechanism underlying the regulation of sortilin expression and its trafficking function. J Cell Physiol. 2020;235(12):8958–8971. doi:10.1002/jcp.29818

14. Zhong LY, Cayabyab FS, Tang CK, Zheng XL, Peng TH, Lv YC. Sortilin: a novel regulator in lipid metabolism and atherogenesis. Clin Chim Acta. 2016;460:11–17. doi:10.1016/j.cca.2016.06.013

15. Strong A, Raeder J. Sortilin as a regulator of lipoprotein metabolism. Curr Atheroscler Rep. 2012;14(3):211–218. doi:10.1007/s11883-012-0248-x

16. Nykjaer A, Willnow TE. Sortilin: a receptor to regulate neuronal viability and function. Trends Neurosci. 2012;35(4): 261–270.

17. Wahe A, Kasmapour B, Schmaderer C, Liebl D, Sandhoff K, Nykjaer A et al. Golgi-to-phagosome transport of acid sphingomyelinase and prosaposin is mediated by sortilin. J Cell Sci. 2010;123(14):2502–2511.

18. Willnow TE, Petersen CM, Nykjaer A. VPS 10P-domain receptors — regulators of neuronal viability and function. Nat Rev Neurosci. 2008;9(12):899–909. doi:10.1038/nrg2454

19. Strong A, Ding Q, Edmondson AC, Millar JS, Sachs KV, Li X et al. Hepatic sortilin regulates both apolipoprotein B secretion and LDL catabolism. J Clin Invest. 2012;122(8):2807–2816. doi:10.1172/JCI63563

20. Mortensen MB, Kjolby M, Gunnersen S, Larsen JV, Palmfeldt J, Falk E et al. Targeting sortilin in immune cells reduces proinflammatory cytokines and atherosclerosis. J Clin Invest. 2014;124(12):5317–5322. doi:10.1172/JCI76002

21. Kaddai V, Jager J, Gonzalez T, Najem-Lendom R, Bonnafous S, Tran A et al. Involvement of TNF-α in abnormal adipocyte and muscle sortilin expression in obese mice and humans. Diabetologia. 2009;52(5):932–940. doi:10.1007/s00125-009-1273-3

22. Oh TJ, Ahn CH, Kim BR, Kim KM, Moon JH, Lim S et al. Circulating sortilin level as a potential biomarker for coronary atherosclerosis and diabetes mellitus. Cardiovasc Diabetol. 2017;16(1):92. doi:10.1186/s12933-017-0568-9

23. Goettsch С, Kjolby М, Aikawa E. Sortilin and its multiple roles in cardiovascular and metabolic diseases. Arterioscler Thromb Vasc Biol. 2018;38(1):19–25. doi:10.1161/ATVBAHA.117.310292

24. Kabakova AV, Galyavich AS. Genetic polymorphism and efficiency of lipid-lowering therapy. Bull Contemporary Clin Med. 2016;9(3):75–81.

25. Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466(7307):714–719. doi:10.1038/nature09266

26. Arvind P, Nair J, Jambunathan S, Kakkar VV, Shanker J. CELSR 2-PSRC 1- SORT1 gene expression and associationwith coronary artery disease and plasma lipid levels in an Asian Indian cohort. J Cardiol. 2014;64(5):339–346. doi:10.1016/j.jjcc.2014.02.012

27. Van Der Harst P, Verweij N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ Res. 2018;122(3):433–443. doi:10.1161/CIRCRESAHA.117.312086

28. Erdmann J, Kessler T, Munoz Venegas L, Schunkert H. A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc Res. 2018;114(9):1241–1257. doi:10.1093/cvr/cvy084

29. Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D, Mannucci PM et al. Genome-wide association of earlyonset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009;41(3):334–341. doi:10.1038/ng.327

30. Jones GT et al. A sequence variant associated with sortilin-1 (SORT1) on 1p13.3 is independently associated with abdominal aortic aneurysm. Hum Mol Genet. 2013;22(14):2941–2947. doi:10.1093/hmg/ddt141

31. Muendlein A, Geller-Rhomberg S, Saely CH, Winder T, Sonderegger G, Rein P et al. Significant impact of chromosomal locus 1p13.3 on serum LDL cholesterol and on angiographically characterized coronary atherosclerosis. Atherosclerosis. 2009;206(2):494–499. doi:10.1016/j.atherosclerosis.2009.02.040

32. O’Donnell CJ, Kavousi M, Smith AV, Kardia SL, Feitosa MF, Hwang SJ et al. Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation. 2011;124(25):2855–2864. doi:10.1161/CIRCULATIONAHA.110.974899

33. Goettsch C, Hutcheson JD, Aikawa M, Iwata H, Pham T, Nykjaer A et al. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles. J Clin Invest. 2016;126(4):1323–1336. doi:10.1172/JCI80851

34. Gustafsen S, Kjolbi M, Njegaard M, Matteisen M, Lundhede J, Buttenschen N et al. The hypercholesterolemia risk gene SORT1 promotes the secretion of PCSK9. Cell Metab. 2014;19(2):310–318. doi:10.1016/j.cmet.2013.12.006

35. Kjolbi M, Andersen OM, Breiderhoff T, Fjerbek AV, Pedersen KM, Madsen P et al. Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of liver lipoprotein export. The Metab Cell. 2010;12(3):213–223. doi:10.1016/j.cmet.2010.08.006

36. Patel KM, Strong A, Tohyama J, Jin X, Morales SR, Bilheimer J et al. Macrophage sortilin promotes the absorption of LDL, the formation of foam cells and the development of atherosclerosis. Circ Res. 2015;116(5):789–796. doi:10.1161/CIRCRESAHA.116.305811

37. Hu D, Yang Y, Peng DQ. Increased sortilin and its independent effect on circulating proprotein convertase subtilisinkexin type 9 (PCSK9) in statin-naive patients with coronary artery disease. Int J Cardiol. 2017;227:61–65. doi:10.1016/j.ijcard.2016.11.064

38. Goettsch C, Iwata H, Hutcheson JD, O’Donnell CJ, Chapurlat R, Cook NR et al. Serum sortilin associates with aortic calcification and cardiovascular risk in men. Arterioscler Thromb Vasc Biol. 2017;37:1005–1011. doi:10.1161/ATVBAHA.116.308932

39. Biscetti F, Bonadia N, Santini F, Angelini F, Nardella E, Pitocco D et al. Sortilin levels are associated with peripheral arterial disease in type 2 diabetic subjects. Cardiovasc Diabetol. 2019;18(1):5. doi:10.1186/s12933-019-0805-5

40. Nozue T, Hattori H, Ogawa K, Kujiraoka T, Iwasaki T, Michishita I. Effects of statin therapy on plasma proprotein convertase subtilisin/kexin type 9 and sortilin levels in statin naive patients with coronary artery disease. J Atheroscler Thromb. 2016;23(7):848–856. doi:10.5551/jat.33407

41. Postmus I, Trompet S, Deshmukh HA, Barnes MR, Li X, Warren HR et al. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins. Nat Commun. 2014;5:5068. doi:10.1038/ncomms6068

42. Vrablik M, Khubachek Ya, Dlouha D, Lanska V, Rynekrova J, Zlatolavek L. Influence of variants within seven candidate genes on the effectiveness of statin treatment. Physiol Res. 2012;61(6):609–617. doi:10.33549/physiolres.932341

43. Shirts BH, Hasstedt SJ, Hopkins PN, Hunt SC. Assessment of gene interactions with age in HDL cholesterol, LDL cholesterol, and triglycerides: the effect of SORT1 polymorphism on LDL cholesterol is age dependent. Atherosclerosis. 2011;217(1):139–141. doi:10.1016/j.atherosclerosis.2011.03.008

44. Затейщиков Д. А., Минушкина Л. О., Чумакова О. С., Евдокимова М.А., Зотова И.В., Сидоренко Б.А. Генетические исследования в кардиологии: прогнозирование риска неблагоприятных исходов и проблема персонализированного лечения. Кремлевская медицина. 2014;1:84–91.

45. Kjolby M, Nielsen MS, Petersen CM. Sortilin, encoded by the cardiovascular risk gene SORT1, and its suggested functions in cardiovascular disease. Curr Atheroscler Rep. 2015 Apr;17(4):496. doi:10.1007/s11883-015-0496-7

46. Clark J, Koschinsky M, Marlys L. Apolipoprotein(a) Secretion is Modulated by Sortilin, Proprotein Convertase Subtilisin/Kexin Type 9, and Microsomal Triglyceride Transfer Protein. 2019. Electronic Thesis and Dissertation Repository. 6310. URL:https://ir.lib.uwo.ca/etd/6310

47. Coutinho MF, Bourbon M, Prata MJ, Alves S. Sortilin and the risk of cardiovascular diseases. Rev Port Cardiol. 2013; 32(10):793–799. English, Portuguese. doi:10.1016/j.repc.2013.02.006

48. Chen C, Li J, Matye DJ, Wang Y, Li T. Hepatocyte sortilin 1 knockout and treatment with a sortilin 1 inhibitor reduced plasma cholesterol in Western diet-fed mice. J Lipid Res. 2019;60(3):539–549. doi:10.1194/jlr.M089789

49. Ogawa K, Ueno T, Iwasaki T, Kujiraoka T, Ishihara M, Kunimoto S et al. Soluble sortilin is released by activated platelets and its circulating levels are associated with cardiovascular risk factors. Atherosclerosis. 2016;249:110–115. doi:10.1016/j.atherosclerosis.2016.03.041

50. Yu XH, Fu YC, Zhang DW, Yin K, Tang CK. Foam cells in atherosclerosis. Clin. Chim. 2013;424:245–252. doi:10.1016/j.cca.2013.06.006

51. Turner MD, Nejay B, Hirst T, Pennington DJ. Cytokines and chemokines: at the crossroads of cellular signaling and inflammatory diseases. Biochim Biophys Acta. 2014;1843(11):2563–2582. doi:10.1016/j.bbamcr.2014.05.014

52. Libby P, Lichtman A, Hansson GK. Immune effector mechanisms involved in atherosclerosis: from mice to humans. Immunity. 2013;38(6):1092–1104. doi:10.1016/j.immuni.2013.06.009

53. Martin SS, Blaha MJ, Blankstein R, Agatston A, Rivera JJ, Virani SS et al. Dyslipidemia, coronary artery calcium, and incident atherosclerotic cardiovascular disease: implications for statin therapy from the multi-ethnic study of atherosclerosis. Circulation. 2014;129(1):77–86. doi:10.1161/CIRCULATIONAHA.113.003625

54. Criqui MH, Denenberg JO, Ix JH, McClelland RL, Wassel CL, Rifkin DE et al. Calcium density of coronary artery plaque and risk of incident cardiovascular events. JAMA. 2014;311(3):271–278.

55. Joshi NV, Vesey AT, Williams MC, Shah ASV, Calvert PA, Craighead FHM et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383(9918):705–713. doi:10.1016/S0140-6736(13)61754-7

56. Vengrenyuk Y, Carlier S, Xanthos S, Cardoso L, Ganatos P, Virmani R et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci USA. 2006;103(40):14678–14683. doi:10.1073/pnas.0606310103

57. Kelly-Arnold A, Maldonado N, Laudier D, Aikawa E, Cardoso L, Weinbaum S. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci USA. 2013;110(26):10741–10746. doi:10.1073/pnas.1308814110

58. Møller PL, Rohde PD, Winther S, Breining P, Nissen L, Nykjaer A et al. Sortilin as a biomarker for cardiovascular disease revisited. Front Cardiovasc Med. 2021;8:652584. doi:10.3389/fcvm.2021.652584


Дополнительные файлы

Рецензия

Для цитирования:


Губарева И.В., Вуколова Ю.Ю. Биологические и патофизиологические аспекты использования сортилина в диагностике атеросклероза. Артериальная гипертензия. 2021;27(4):402-408. https://doi.org/10.18705/1607-419X-2021-27-4-402-408

For citation:


Gubareva I.V., Vukolova Y.Y. Sortilin as a marker of atherosclerosis: biological and pathophysiological aspects. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2021;27(4):402-408. (In Russ.) https://doi.org/10.18705/1607-419X-2021-27-4-402-408

Просмотров: 768


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)