The role of membrane and circulating forms of ACE 2 in pathological processes in COVID-19 infection
https://doi.org/10.18705/1607-419X-2021-27-6-608-616
Abstract
The review analyzes milestone information about the function and pathogenic significance of human angiotensin-converting enzyme 2 (ACE2). ACE2 is involved in the development of diseases such as hypertension, malabsorption of certain amino acids in the intestine, and a new type of pneumonia COVID-19 caused by the SARSCoV-2 virus. Based on the latest literary sources, an assessment is made of the role of differential expression of receptor and soluble forms of this protein in the functioning of the renin-angiotensin-aldosterone system, as well as the mechanisms of ACE2 participation in the sequential chemical conversion of angiotensin II and its effect on the function of the cardiovascular system. The role of ACE2 in the development of inflammatory processes in the intestine and its effect on the composition of the intestinal microbiota are also discussed. In addition, the review presents most general data on the proteolytic activation of the S-glycoprotein of the SARS-CoV-2 virus and its participation, together with ACE2, in the process of virus introduction into the host cell. In conclusion, the hypothesis about autoimmune complications of COVID-19 associated with the formation of the S-glycoproteinACE2 immune complex and the production of autoantibodies is considered.
Keywords
About the Authors
Y. V. CheburkinRussian Federation
MD, PhD, Senior Researcher, Head, Laboratory of Contagious and Biomolecular Nanostructures
2 Akkuratov street, St Petersburg, 197341 Russia
D. L. Sonin
Russian Federation
MD, PhD, Head, Department of Microcirculation and Myocardial Metabolism; Leading Researcher, Laboratory of Blood Circulation Biophysics
2 Akkuratov street, St Petersburg, 197341 Russia
A. S. Polozov
Russian Federation
Research Laboratory Assistant, Laboratory of Contagious and Biomolecular Nanostructures; Junior Researcher, Laboratory of Physiology of Nutrition
2 Akkuratov street, St Petersburg, 197341 Russia
P. A. Mateikovich
Russian Federation
Junior Researcher, Laboratory of Neurogenesis and Neurodegenerative Diseases and the Laboratory of Contagious and Biomolecular Nanostructures
2 Akkuratov street, St Petersburg, 197341 Russia
E. V. Savochkina
Russian Federation
Research Laboratory Assistant, Contagious and Biomolecular Nanostructures; Junior Researcher, Laboratory of Physiology of Nutrition
2 Akkuratov street, St Petersburg, 197341 Russia
M. M. Galagudza
Russian Federation
MD, PhD, DSc, Professor, Corresponding Member of RAS, Director, Institute of Experimental Medicine, Chief Researcher, Department of Microcirculation
and Myocardial Metabolism, Head, Department of Pathological Physiology of the Institute of Medical Education; Professor, Department of Pathophysiology with the Course of Clinical Pathophysiology
2 Akkuratov street, St Petersburg, 197341 Russia
References
1. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N. et al. A novel angiotensin‐converting enzyme‐related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res. 2000;87(5):E1-9. doi: 10.1161/01.res.87.5.e1.
2. Tipnis S, Hooper N, Hyde R, Karran E, Christie G, Turner A. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275(43):33238-43. doi: 10.1074/jbc.M002615200.
3. Hamming I, Timens W, Bulthuis M, Lely A, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631-7. doi: 10.1002/path.1570.
4. Doobay M, Talman L, Obr T, Tian X, Davisson R, Lazartigues E. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R373-381. doi: 10.1152/ajpregu.00292.2006.
5. Harmer D, Gilbert M, Borman R, Clark K. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532(1-2):107-110. doi: 10.1016/s0014-5793(02)03640-2.
6. Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116:1097-1100. doi: 10.1093/cvr/cvaa078.
7. Lambert D, Yarski M, Warner F, Thornhill P, Parkin E, Smith A et al. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem. 2005;280:30113-30119. doi: 10.1074/jbc.M505111200.
8. Arendse L, Danser A, Poglitsch M, Touyz R, Burnett J, Llorens-Cortes C et al. Novel therapeutic approaches targeting the renin-angiotensin system and associated peptides in hypertension and heart failure. Pharmacol Rev. 2019;71:539-570. doi: 10.1124/pr.118.017129.
9. Shaltout H, Westwood B, Averill D, Ferrario C, Figueroa J, Diz D et al. Angiotensin metabolism in renal proximal tubules, urine, and serum of sheep: evidence for ACE2-dependent processing of angiotensin II. Am J Physiol Renal Physiol. 2007;292(1):F82-91. doi: 10.1152/ajprenal.00139.2006.
10. Úri K, Fagyas M, Siket I, Kertész A, Csanádi Z, Sándorfi G et al. New perspectives in the renin-angiotensin-aldosterone system (RAAS) IV: circulating ACE2 as a biomarker of systolic dysfunction in human hypertension and heart failure. PloS One, 2014;9(4), e87845. doi: 10.1371/journal.pone.0087845.
11. Epelman S, Tang WH, Chen SY, Van Lente F, Francis GS, Sen S. Detection of soluble angiotensin-converting enzyme 2 in heart failure: insights into the endogenous counter-regulatory pathway of the renin-angiotensin-aldosterone system. J Am Coll Cardiol. 2008;52(9):750-4. doi: 10.1016/j.jacc.2008.02.088.
12. Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487:477-481. doi: 10.1038/nature11228.
13. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562-569. doi: 10.1038/s41564-020-0688-y.
14. Walls A, Park Y, Tortorici M, Wall A, McGuire A, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein [published correction appears in Cell. 2020;183(6):1735]. Cell. 2020;181(2):281-292.e6. doi: 10.1016/j.cell.2020.02.058.
15. Zhang H, Penninger J, Li Y, Zhong N, Slutsky A. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586-590. doi: 10.1007/s00134-020-05985-9.
16. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
17. World Health Organization. Hypertension and COVID-19 [Internet]. 17 June 2021, COVID-19: Scientific briefs. Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-Sci_Brief-Hypertension-2021.1 .
18. Surma S, Romańczyk M, Łabuzek K. Coronavirus SARS-Cov-2 and arterial hypertension - facts and myths. Pol Merkur Lekarski. 2020;48(285):195-198. PMID: 32564046.
19. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B. et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med. 2005;11:875–879. doi: 10.1038/nm1267.
20. Wang J, He W, Guo L, Zhang Y, Li H, Han S et al. The ACE2-Ang (1-7)-Mas receptor axis attenuates cardiac remodeling and fibrosis in post-myocardial infarction. Mol Med Rep. 2017;16(2):1973-1981. doi: 10.3892/mmr.2017.6848.
21. Zhu H, Zhang L, Ma Y, Zhai M, Xia L, Liu J et al. The role of SARS‐CoV‐2 target ACE2 in cardiovascular diseases. J Cell Mol Med. 2021;25(3):1342-1349. Published online 2021 Jan 14. doi: 10.1111/jcmm.16239.
22. Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res. 2017;125(Pt A):21-38. doi: 10.1016/j.phrs.2017.06.005.
23. Chaudhry F, Lavandero S, Xie X, Sabharwal B, Zheng YY, Correa A et al. Manipulation of ACE2 expression in COVID-19. Open Heart. 2020;7(2):e001424. doi: 10.1136/openhrt-2020-001424.
24. Shatunova PO, Bykov AS, Svitich OA, Zverev VV. Angiotensin-converting enzyme 2. Approaches to pathogenetic therapy of COVID-19. Journal of Microbiology, Epidemiology and Immunobiology. 2020;4:339-345. In Russian.
25. Danser A, Epstein M, Batlle D. Renin-Angiotensin System Blockers and the COVID-19 Pandemic: At Present There Is No Evidence to Abandon Renin-Angiotensin System Blockers. Hypertension. 2020;75(6):1382-1385. doi: 10.1161/HYPERTENSIONAHA.120.15082.
26. Nicin L, Abplanalp WT, Mellentin H, Kattih B, Tombor L, John D et al. Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts. Eur Heart J. 2020;41(19):1804-1806. doi: 10.1093/eurheartj/ehaa311.
27. Fisun AYa, Cherkashin DV, Tyrenko VV, Zhdanov CV, Kozlov CV. Role of renin-angiotensin-aldosterone system in the interaction with coronavirus SARS-CoV-2 and in the development of strategies for prevention and treatment of new coronavirus infection (COVID-19). Arterial’naya Gipertenziya = Arterial Hypertension. 2020;26(3):248-262. In Russian. doi:10.18705/1607-419X-2020-26-3-248-262.
28. Zagidullin NSh, Gareeva DF, Ishmetov VSh, Pavlov AV, Plotnikova MR, Pushkareva AE, Pavlov VN. Renin-angiotensin-aldosterone system in new coronavirus infection 2019. Arterial’naya Gipertenziya = Arterial Hypertension. 2020;26(3):240–247 https://doi.org/10.18705/1607-419X-2020-26-3-240-247.
29. Chu C, Zeng S, Hasan A, Hocher C, Krämer B, Hocher B. Comparison of infection risks and clinical outcomes in patients with and without SARS-CoV-2 lung infection under renin-angiotensin-aldosterone system blockade: Systematic review and meta-analysis. Br J Clin Pharmacol. 2021;87(6):2475-2492. doi: 10.1111/bcp.14660.
30. Wang X, Ye Y, Gong H, Wu J, Yuan J, Wang S et al. The effects of different angiotensin II type 1 receptor blockers on the regulation of the ACE-AngII-AT1 and ACE2-Ang(1-7)-Mas axes in pressure overload-induced cardiac remodeling in male mice. J Mol Cell Cardiol. 2016;97:180-90. doi: 10.1016/j.yjmcc.2016.05.012.
31. Ferrario C, Jessup J, Chappell M, Averill D, Brosnihan K, Tallant E et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111(20):2605-10. doi: 10.1161/CIRCULATIONAHA.104.510461.
32. Soler M, Ye M, Wysocki J, William J, Lloveras J, Batlle D. Localization of ACE2 in the renal vasculature: amplification by angiotensin II type 1 receptor blockade using telmisartan. Am J Physiol Renal Physiol. 2009;296:F398-405. doi: 10.1152/ajprenal.90488.2008.
33. Rico-Mesa J, White A, Anderson A. Outcomes in patients with COVID-19 infection taking ACEI/ARB. Curr. Cardiol. Rep. 2020;22(5):31. doi: 10.1007/s11886-020-01291-4.
34. Puskarich M, Cummins N, Ingraham N, Wacker D, Reilkoff R, Driver B et al. A multi-center phase II randomized clinical trial of losartan on symptomatic outpatients with COVID-19. EClinicalMedicine. 2021;37:100957. doi: 10.1016/j.eclinm.2021.100957.
35. Tornling G, Batta R, Porter J, Williams B, Bengtsson T, Parmar K et al. Seven days treatment with the angiotensin II type 2 receptor agonist C21 in hospitalized COVID-19 patients; a placebo-controlled randomised multi-centre double-blind phase 2 trial. EClinicalMedicine. 2021;41:101152. doi: 10.1016/j.eclinm.2021.101152.
36. Tsiberkin AI, Golovatyuk KA, Bykova ES, Andreeva AT, Vashukova MA, Tsoy UA, Karonova TL. Hypokalemia and the renin‑angiotensin‑aldosterone system activity in COVID‑19 patients. Arterial’naya Gipertenziya = Arterial Hypertension. 2021;27(4):457-463. In Russian doi:10.18705/1607-419X-2021-27-4-457-463.
37. Zhang X, Li S, Niu S. ACE2 and COVID-19 and the resulting ARDS. Postgrad Med J. 2020 Jul;96(1137):403-407. doi: 10.1136/postgradmedj-2020-137935.
38. Visseren F, Mach F, Smulders Y, Carballo D, Koskinas K, Bäck M et al. ESC National Cardiac Societies; ESC Scientific Document Group. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34):3227-3337. doi: 10.1093/eurheartj/ehab484.
39. Perlot T, Penninger JM. ACE2 - from the renin-angiotensin system to gut microbiota and malnutrition. Microbes Infect. 2013 Nov;15(13):866-73. doi: 10.1016/j.micinf.2013.08.003.
40. Zhang H, Li H, Lyu J, Lei X, Li W, Wu G et al. Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCoV infection. Int J Infect Dis. 2020;96:19-24. doi: 10.1016/j.ijid.2020.04.027.
41. Camargo S, Singer D, Makrides V, Huggel K, Pos K, Wagner C et al. Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations. Gastroenterology. 2009;136(3):872-82. doi: 10.1053/j.gastro.2008.10.055.
42. Kowalczuk S, Bröer A, Tietze N, Vanslambrouck JM, Rasko JE, Bröer S. A protein complex in the brush-border membrane explains a Hartnup disorder allele. FASEB J. 2008 Aug;22(8):2880-7. doi: 10.1096/fj.08-107300.
43. Perrin-Cocon L, Aublin-Gex A, Sestito S, Shirey K, Patel M, André P et al. TLR4 antagonist FP7 inhibits LPS-induced cytokine production and glycolytic reprogramming in dendritic cells, and protects mice from lethal influenza infection. Sci Rep. 2017;7:40791. doi: 10.1038/srep40791.
44. Gribar S, Anand R, Sodhi C, Hackam D. The role of epithelial Toll-like receptor signaling in the pathogenesis of intestinal inflammation. J Leukoc Biol. 2008;83(3):493-8. doi: 10.1189/jlb.0607358.
45. Zuo T, Zhang F, Lui G, Yeoh Y, Li A, Zhan H et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020;159(3):944-955.e8. doi: 10.1053/j.gastro.2020.05.048.
46. Bosch B, van der Zee R, de Haan C, Rottier P. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003;77(16):8801-11. doi: 10.1128/jvi.77.16.8801-8811.2003.
47. Coutard B, Valle C, de Lamballerie X, Canard B, Seidah N, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020;176:104742. doi: 10.1016/j.antiviral.2020.104742.
48. Zhou P, Yang X, Wang X, Hu B, Zhang L, Zhang W et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273. doi: 10.1038/s41586-020-2012-7.
49. Wong S, Li W, Moore M, Choe H, Farzan M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem. 2004 Jan 30;279(5):3197-201. doi: 10.1074/jbc.C300520200.
50. Heald-Sargent T, Gallagher T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses. 2012;4(4):557-80. doi: 10.3390/v4040557.
51. Millet J, Whittaker G. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res. 2015;202:120-34. doi: 10.1016/j.virusres.2014.11.021.
52. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052.
53. Glowacka I, Bertram S, Müller M, Allen P, Soilleux E, Pfefferle S et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011;85(9):4122-34. doi: 10.1128/JVI.02232-10.
54. Böttcher E, Matrosovich T, Beyerle M, Klenk H, Garten W, Matrosovich M. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol. 2006;80(19):9896-8. doi: 10.1128/JVI.01118-06.
55. Hofmann H, Geier M, Marzi A, Krumbiegel M, Peipp M, Fey G et al. Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem Biophys Res Commun. 2004;319(4):1216-21. doi: 10.1016/j.bbrc.2004.05.114.
56. Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer R, Stahl M et al. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell. 2020;181(4):905-913.e7. doi: 10.1016/j.cell.2020.04.004.
57. Lei C, Qian K, Li T, Zhang S, Fu W, Ding M et al. Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig. Nat Commun. 2020;11(1):2070. doi: 10.1038/s41467-020-16048-4.
58. Zhang G, Pomplun S, Loftis AR, et al. Investigation of ACE2 N-terminal fragments binding to SARS-CoV-2 Spike RBD. bioRxiv; 2020. [Preprint]. DOI: 10.1101/2020.03.19.999318.
59. Baum A, Fulton B, Wloga E, Copin R, Pascal K, Russo V et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science. 2020;369(6506):1014-1018. doi: 10.1126/science.abd0831.
60. Clinical Trial NCT04335136. Recombinant Human Angiotensin-converting Enzyme 2 (rhACE2) as a Treatment for Patients With COVID-19 (APN01-COVID-19). [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT04335136.
61. Haschke M, Schuster M, Poglitsch M, Loibner H, Salzberg M, Bruggisser M et al. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet. 2013;52(9):783-92. doi: 10.1007/s40262-013-0072-7.
62. Khan A, Benthin C, Zeno B, Albertson T, Boyd J, Christie J et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017;21(1):234. doi: 10.1186/s13054-017-1823-x.
63. Nicholls J, Peiris M. Good ACE, bad ACE do battle in lung injury, SARS. Nat Med. 2005;11(8):821-2. doi: 10.1038/nm0805-821.
64. McMillan P, Uhal BD. COVID-19-A theory of autoimmunity to ACE-2. MOJ Immunol. 2020;7(1):17-19.
65. Takahashi Y, Haga S, Ishizaka Y, Mimori A. Autoantibodies to angiotensin-converting enzyme 2 in patients with connective tissue diseases. Arthritis Res Ther. 2010;12(3):R85. doi: 10.1186/ar3012.
66. Richardson S, Hirsch J, Narasimhan M, Crawford J, McGinn T, Davidson K et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323(20):2052-2059.
67. Danilov S, Muzykantov V, Martynov A, Atochina E, Sakharov I, Trakht I, Smirnov V. Lung is the target organ for a monoclonal antibody to angiotensin-converting enzyme. Lab Invest. 1991;64(1):118-24.
68. Camussi G, Biesecker G, Caldwell P, Biancone L, Andres G, Brentjens J. Role of the membrane attack complex of complement in lung injury mediated by antibodies to endothelium. Int Arch Allergy Immunol. 1993;102(3):216-23. doi: 10.1159/000236529.
Supplementary files
Review
For citations:
Cheburkin Y.V., Sonin D.L., Polozov A.S., Mateikovich P.A., Savochkina E.V., Galagudza M.M. The role of membrane and circulating forms of ACE 2 in pathological processes in COVID-19 infection. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2021;27(6):608-616. (In Russ.) https://doi.org/10.18705/1607-419X-2021-27-6-608-616