Arterial stiffness and central aortic blood pressure in patients with hypertension and abdominal aortic aneurysm
https://doi.org/10.18705/1607-419X-2022-28-3-243-252
Abstract
Objective. To assess the arterial stiffness, peripheral and central aortic blood pressure (PBP and CBP), and to determinate their relationships with indicators of structural changes of the affected aorta in patients with hypertension (HTN) and abdominal aortic aneurysms (AAA).
Design and methods. We examined 75 patients with HTN and AAA and 75 controls with HTN without AAA. Groups matched by age and gender. A PBP was measured by OMRON (Japan). Noninvasive measurements of CBP, augmentation index (AIx), augmentation pressure (AP), carotid-femoral pulse wave velocity (cfPWV) were assessed by SphygmoCor (AtCorMedical, Australia).
Results. There was no difference in cfPWV between patients with AAA and control group (10,3 (2,2) vs 9,7 (2,1) m/s; р = 0,102). Age, systolic PBP, and aortic diameter were independent predictors of cfPVV in patients with AAA (β = 0,271, р = 0,029; β = 0,272, р = 0,030 и β = –0,361, р = 0,004, respectively). Patients with large aortic diameter of AAA (> 60 mm) had decreased cfPWV compared with control group (8,8 (1,5) vs 9,7 (2,1) m/s; р < 0,05), patients with AAA diameter less than 60 mm, on the contrary, had increased cfPVV compared with the controls (11,8 (1,7) vs 9,7 (2,1) m/s; р < 0,001). Patients with AAA and patients of control group did not differ in systolic and pulse PBP (138,6 (16,4) vs 138,1 (13,6) mm Hg; р = 0,831 and 58,6 (11,8) vs 59,6 (10,2) mm Hg; р = 0,569, respectively). AIx and AP were higher in patients with AAA versus patients without AAA (27,6 (8,2) vs 21,3 (7,9)%; р < 0,001 and 17,3 (6,8) vs 13,9 (5,4) mm Hg; р = 0,001, respectively). Systolic and pulse CBP were higher in patients with AAA than in patients of control group (130,0 (16,4) vs 124,9 (13,9) mm Hg; р = 0,046 and 49,5 (11,7) vs 45,7 (9,9) mm Hg; р = 0,031, respectively).
Conclusions. In patients with AAA cfPWV decreased with the expansion of the maximum aortic diameter. CfPWV is not suitable for accurate arterial stiffness assessment in patients with HTN and AAA due to the apparent confounding effect of aneurysm on the biomechanical properties of the aorta. Local assessment of the elastic properties of the aorta such as computed tomography angiography and magnetic resonance imaging is required for arterial stiffness evaluation in patients with AAA. Parameters of the reflected pulse wave such as AP and AIx are increased in patients with AAA. This might contribute to the increase in central aortic BP and target organ damage in patients with HTN combined with AAA.
Keywords
About the Authors
A. P. GurevichRussian Federation
Aleksandra P. Gurevich, MD, Junior Researcher, Department for Arterial Hypertension
2 Akkuratov street, St Petersburg, 197341
I. V. Emelyanov
Russian Federation
Igor V. Emelyanov, MD, PhD, Senior Researcher, Department for Arterial Hypertension, Department for Arterial Hypertension
St Petersburg
M. A. Boyarinova
Russian Federation
Maria A. Boyarinova, MD, Researcher, Research Laboratory of Population Genetics, Research Department of Genetic Risks and Personalized Prevention, a World-Class Research Centre for Personalized Medicine
St Petersburg
E. V. Moguchaya
Russian Federation
Ekaterina V. Moguchaya, MD, Junior Researcher, Scientific Research Laboratory of Epidemiology of Noncommunicable Diseases
St Petersburg
O. P. Rotar
Russian Federation
Oxana P. Rotar, MD, PhD, DSc, Chief Researcher, Scientific Research Laboratory of Epidemiology of Noncommunicable Diseases
St Petersburg
Y. A. Kudaev
Yuriy A. Kudaev, MD, Cardiologist, Vascular Surgery Department
St Petersburg
M. A. Chernyavskiy
Russian Federation
Mikhail A. Chernyavskiy, MD, PhD, DSc, Head, Department for Vascular and Interventional Surgery
St Petersburg
A. O. Konradi
Russian Federation
Aleksandra O. Konradi, MD, PhD, DSc, Professor, Corresponding Member of the RAS, Head, Department of Organization, Management and Economics of Healthcare, Institute of Medical Education, Deputy General Director on Research
St Petersburg
References
1. Kuivaniemi H, Ryer EJ, Elmore JR, Tromp G. Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev Cardiovasc Ther. 2015;13(9):975–987. doi: 10.1586/14779072.2015.1074861
2. Takagi H, Goto SN, Matsui M, Manabe H, Umemoto T. A further meta-analysis of population-based screening for abdominal aortic aneurysm. J Vasc Surg. 2010;52(4):1103–1108. doi:10.1016/j.jvs.2010.02.283
3. Benson RA, Poole R, Murray S, Moxey P, Loftus IM. Screening results from a large United Kingdom abdominal aortic aneurysm screening center in the context of optimizing United Kingdom National Abdominal Aortic Aneurysm Screening Programme protocols. J Vasc Surg. 2016;63(2):301–304. doi:10.1016/j.jvs.2015.08.091
4. Hager J, Lanne T, Carlsson P, Lundgren F. No benefit of screening for abdominal aortic aneurysm among 70-instead of 65-year-old men. Int Angiol. 2014;33(5):474–479.
5. Wanhainen A, Hultgren R, Linné A, Holst J, Gottsäter A, Langenskiöld M et al.; Swedish Aneurysm Screening Study Group (SASS). Outcome of the Swedish nationwide abdominal aortic aneurysm Screening program. Circulation. 2016;134(16):1141– 1148. doi:10.1161/CIRCULATIONAHA.116.022305
6. Zatevakhin II, Matyushkin AV. Complicated abdominal aortic aneurysms. Moscow: Publishing House Litterra, 2010. P. 39–58. In Russian.
7. Bath MF, Gokani VJ, Sidloff DA, Jones LR, Choke E, Sayers RD et al. Systematic review of cardiovascular disease and cardiovascular death in patients with a small abdominal aortic aneurysm. Br J Surg. 2015;102(8):866–872. doi:10.1002/bjs.9837
8. Chambers D, Epstein D, Walker S, Fayter D, Paton F, Wright K et al. Endovascular stents for abdominal aortic aneurysms: a systematic review and economic model. Health Technol Assess. 2009;13(48):1–189,215–318, iii. doi:10.3310/hta13480
9. Brown LC, Thompson SG, Greenhalgh RM, Powell JT; Endovascular Aneurysm Repair trial participants. Incidence of cardiovascular events and death after open or endovascular repair of abdominal aortic aneurysm in the randomized EVAR trial 1. Br J Surg. 2011;98(7):935–942. doi:10.1002/bjs.7485
10. Karthikesalingam A, Bahia SS, Patterson BO, Peach G, Vidal-Diez A, Ray KK et al. The shortfall in long-term survival of patients with repaired thoracic or abdominal aortic aneurysms: retrospective case-control analysis of hospital episode statistics. Eur J Vasc Endovasc Surg. 2013;46(5):533–541. doi:10.1016/j.ejvs.2013.09.008
11. Kuivaniemi H, Ryer EJ, Elmore JR, Tromp G. Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev Cardiovasc Ther. 2015;13(9):975–987. doi:10.1586/14779072.2 015.1074861
12. Golledge J, Muller J, Daugherty A, Norman P. Abdominal aortic aneurysm: pathogenesis and implications for management. Arterioscler Thromb Vasc Biol. 2006;26(12):2605–2613. doi:10.1161/01.ATV.0000245819.32762.cb
13. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant metaanalysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63(7):636–646. doi:10.1016/j.jacc.2013.09.063
14. Lee CW, Sung SH, Chen CK, Chen IM, Cheng HM, Yu WC et al. Measures of carotid-femoral pulse wave velocity and augmentation index are not reliable in patients with abdominal aortic aneurysm. J Hypertens. 2013;31(9):1853–1860. doi:10.1097/HJH.0b013e328362360a
15. Durmus I, Kazaz Z, Altun G, Cansu A. Augmentation index and aortic pulse wave velocity in patients with abdominal aortic aneurysms. Int J Clin Exp Med. 2014;7(2):421–425.
16. Bailey MA, Davies JM, Griffin KJ, Bridge KI, Johnson AB, Sohrabi S et al. Carotid-femoral pulse wave velocity is negatively correlated with aortic diameter. Hypertens Res. 2014;37(10):926– 932. doi:10.1038/hr.2014.101
17. Åström Malm I, De Basso R, Blomstrand P, Bjarnegård N. Increased arterial stiffness in males with abdominal aortic aneurysm. Clin Physiol Funct Imaging. 2021;41(1):68–75. doi:10.1111/cpf.12667
18. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D et al.; European Network for Non-invasive Investigation of Large Arteries. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27(21):2588–2605. doi:10.1093/eurheartj/ehl254
19. Koullias G, Modak RK, Korkolis D, Barash P, Elefteriades JA. Mechanical and elastic properties of the normal and aneurysmal ascending aorta by intraoparative epiaortic echocardiography. J Am Coll Cardiol. 2003;41(6SupplII):513a. doi:10.1016/S0735-1097(03)82775-4
20. Mikael LR, Paiva AMG, Gomes MM, Sousa ALL, Jardim PCBV, Vitorino PVO et al. Vascular aging and arterial stiffness. Arq Bras Cardiol. 2017;109(3):253–258. doi:10.5935/abc.20170091
21. Vlachopoulos C, Aznaouridis K, O’Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31(15):1865–1871. doi:10.1093/eurheartj/ehq024
22. Vande Geest JP, Sacks MS, Vorp DA. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech. 2006;39(7):1324–1334. doi:10.1016/j.jbiomech.2005.03.003
23. Raaz U, Zöllner AM, Schellinger IN, Toh R, Nakagami F, Brandt M et al. Segmental aortic stiffening contributes to experimental abdominal aortic aneurysm development. Circulation. 2015;131(20):1783–1795. doi:10.1161/CIRCULATIONAHA.114.012377
24. Chazova IE, Zhernakova YuV on behalf of the experts. Clinical guidelines. Diagnosis and treatment of arterial hypertension. Syst Hypertens. 2019;16(1):6–31. doi:10.26442/2075082X.2019.1.190179. In Russian.
25. Gallagher D, Adji A, O’Rourke MF. Validation of the transfer function technique for generating central from peripheral upper limb pressure waveform. Am J Hypertens. 2004;17(11Pt1):1059–1067. doi:10.1016/j.amjhyper.2004.05.027
26. Wilkinson IB, Mohammad NH, Tyrrell S, Hall IR, Webb DJ, Paul VE et al. Heart rate dependency of pulse pressure amplification and arterial stiffness. Am J Hypertens. 2002;15(1Pt1):24–30. doi:10.1016/s0895-7061(01)02252-x
27. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T et al. Artery Society; European Society of Hypertension Working Group on Vascular Structure and Function; European Network for Noninvasive Investigation of Large Arteries. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012;30(3):445–448. doi:10.1097/HJH.0b013e32834fa8b0
28. Vasyuk YA, Ivanova SV, Shkolnik EL, Kotovskaya YV, Milyagin VA, Oleynikov VE et al. Consensus of Russian experts on the evaluation of arterial stiffness in clinical practice. Cardiovasc Ther Prev. 2016;15(2):4–19. doi:10.15829/1728-8800-2016-2-4-19. In Russian.
29. Kim HL, Kim SH. Pulse wave velocity in atherosclerosis. Front Cardiovasc Med. 2019;6:41. doi:10.3389/fcvm.2019.00041
30. Millasseau SC, Stewart AD, Patel SJ, Redwood SR, Chowienczyk PJ. Evaluation of carotid-femoral pulse wave velocity: influence of timing algorithm and heart rate. Hypertension. 2005;45(2):222–226. doi:10.1161/01.HYP.0000154229.97341.d2
31. Nichols WW, O’Rouke MF, Vlackopoulos C. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. London: Hodder Arnold. 2011. P. 369–387.
Supplementary files
Review
For citations:
Gurevich A.P., Emelyanov I.V., Boyarinova M.A., Moguchaya E.V., Rotar O.P., Kudaev Y.A., Chernyavskiy M.A., Konradi A.O. Arterial stiffness and central aortic blood pressure in patients with hypertension and abdominal aortic aneurysm. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2022;28(3):243-252. (In Russ.) https://doi.org/10.18705/1607-419X-2022-28-3-243-252