Analysis of clinical and anamnestic factors affecting endothelial glycocalyx condition in patients with active rheumatoid arthritis
https://doi.org/10.18705/1607-419X-2022-28-2-188-197
Abstract
Background. Endothelial dysfunction (ED) involved in the pathogenesis of rheumatoid arthritis (RA) is more associated with the endothelial glycocalyx (EGC) condition. EGC thinning is an independent predictor of cardiovascular complications that is why it is important to determine the risk factors (RF) that most affect EGC in RA.
Objective. To study the relationship between the endothelium condition and RF for an RA unfavourable course and cardiovascular risk (CVR).
Design and methods. The study involved 103 patients aged 18 to 69 years of both sexes with active RA. A dark-field microscope was used to assess the EGC condition. In the microcirculatory bed, it allows you to evaluate the depth of erythrocyte perfusion in the EGC thickness (PBR), micro vessel density (VMD) and the number of erythrocytes in them (RBC Filling). An increase in PBR indicates EGC thinning and is a marker of ED. A decrease in RBC Filling and VMD indicates a decrease in the functioning vessels number. Circulating syndecan1 (Sdc1) was assessed as a laboratory EGC damage marker. As a result of a two-step cluster analysis, based on dark-field microscopy, two clusters were identified in the study cohort. They were compared in terms of RF for an unfavourable course of RA and CVR.
Results. Patients belonging to cluster 1 had thinner EGC (high PBR), low perfusion (low RBC Filling) and density (low VMD) of microvessels, higher levels of Sdc1 than in cluster 2. This indicates a significant impairment of microcirculation in cluster 1. Among the studied RF for an unfavorable course of RA and CVR, cluster 1 differed only in a lower frequency of taking disease-modifying antirheumatic drugs (DMARDs) compared to the other cluster. In the future, it was associated with the 3,6-fold greater need for DMARD therapy modification.
Conclusions. The lack of DMARD therapy, compared with the other RF for the unfavorable course of RA and CVR, makes the greatest contribution to EGC damage and microcirculation disorders in patients with active RA. The revealed changes confirm relationship between endothelial disorders and the pathogenesis of this disease and determine the leading role of DMARD therapy in the RA treatment.
About the Authors
D. A. ShimanskiRussian Federation
Daniel A. Shimanski, MD, Post-Graduate Student, Department of Internal Diseases with the Course of Allergology and Immunology named after academician M.V. Chernorutsky with the clinic
6/8 L’va Tolstogo street, St Petersburg, 197022
I. I. Nesterovich
Russian Federation
Irina I. Nesterovich, MD, PhD, DSc, Professor, Department of Internal Diseases with the Course of Allergology and Immunology named after academician M.V. Chernorutsky with the clinic
St Petersburg
O. V. Inamova
Russian Federation
Oksana V. Inamova, MD, PhD, Chief Medical Officer
St Petersburg
S. V. Lapin
Russian Federation
Sergey V. Lapin, MD, PhD, Head, Laboratory for Diagnostics of Autoimmune Diseases
St Petersburg
O. V. Galkina
Russian Federation
Olga V. Galkina, PhD in Biology Sciences, Head, Laboratory of Biochemical Homeostasis
St Petersburg
E. N. Levykina
Russian Federation
Elena N. Levykina, PhD in Chemistry Sciences, Researcher, Laboratory of Biochemical Homeostasis
St Petersburg
V. I. Trophimov
Russian Federation
Vasiliy I. Trophimov, MD, PhD, DSc, Professor, Head, Department of Internal Diseases with the course of Allergology and Immunology named after academician M.V. Chernorutsky with the clinic
St Petersburg
T. D. Vlasov
Russian Federation
Timur D. Vlasov, MD, PhD, DSc, Professor, Head, Department of Pathophysiology with the course of Clinical Pathophysiology
St Petersburg
References
1. Bordy R, Totoson P, Prati C, Marie C, Wendling D, Demougeot C. Microvascular endothelial dysfunction in rheumatoid arthritis. Nat Rev Rheumatol. 2018;14(7):404–420. doi:10.1038/s41584-018-0022-8
2. Vlasov TD, Lazovskaya OA, Shimanski DA, Nesterovich II, Shaporova NL. The endothelial glycocalyx: research methods and prospects for their use in endothelial dysfunction assessment. Regional blood circulation and microcirculation. 2020;19(1):5–16. doi:10.24884/1682-6655-2020-19-1-5-16. In Russian.
3. Cao RN, Tang L, Xia ZY, Xia R. Endothelial glycocalyx as a potential theriapeutic target in organ injuries. Chin Med J (Engl). 2019;132(8):963–975. doi:10.1097/CM9.0000000000000177
4. Shimanski DA, Nesterovich II, Inamova OV, Trophimov VI, Galkina OV, Levykina EN et al. Disruption of endothelial glycocalyx in patients with rheumatoid arthritis. Herald of North-Western State Medical University named after I.I. Mechnikov. 2021;13(3):69–74. doi:10.17816/mechnikov81488. In Russian.
5. Vlasov TD, Shimanski DA, Nesterovich II, Trophimov VI. The experience of using dark-field microscopy to assess damage to the endothelial glycocalyx in rheumatoid arthritis. Herald of North-Western State Medical University named after I.I. Mechnikov. 2020;12(4):73–80. doi:10.17816/mechnikov43846. In Russian.
6. Ikonomidis I, Thymis J, Simitsis P, Koliou GA, Katsanos S, Triantafyllou C et al. Impaired endothelial glycocalyx predicts adverse outcome in subjects without overt cardiovascular disease: a 6-year follow-up study. J Cardiovasc Transl Res. 2021. doi:10.1007/s12265-021-10180-2
7. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569–2581. doi:10.1002/art.27584
8. Lee DH, Dane MJ, van den Berg BM, Boels MG, van Teeffelen JW, de Mutsert R et al. Deeper penetration of erythrocytes into the endothelial glycocalyx is associated with impaired microvascular perfusion. PLoS One. 2014;9(5):e96477. doi:10.1371/journal.pone.0096477
9. Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C. Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express. 2007;15(23):15101–15114. doi:10.1364/oe.15.015101
10. Nieuwdorp M, Mooij HL, Kroon J, Atasever B, Spaan JA, Ince C et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes. 2006;55(4):1127– 1132. doi:10.2337/diabetes.55.04.06.db05-1619
11. Eickhoff MK, Winther SA, Hansen TW, Diaz LJ, Persson F, Rossing P et al. Assessment of the sublingual microcirculation with the GlycoCheck system: Reproducibility and examination conditions. PLoS One. 2020;15(12):e0243737. doi:10.1371/journal.pone.0243737
12. Ince C, Boerma EC, Cecconi M, De Backer D, Shapiro NI, Duranteau J et al. Cardiovascular Dynamics Section of the ESICM. Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2018;44(3):281–299. doi:10.1007/s00134-018-5070-7
13. Long RM, Vink H, inventors; Microvascular health solutions LLC, assignee. Compositions, systems, and methods for assessing and improving vascular health and treatments involving the same. US patent WO/2018/208846. November 15, 2018. Available from: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018208846
14. Albrecht K, Zink A. Poor prognostic factors guiding treatment decisions in rheumatoid arthritis patients: a review of data from randomized clinical trials and cohort studies. Arthritis Res Ther. 2017;19(1):68. doi:10.1186/s13075-017-1266-4
15. Edwards CJ, Kiely P, Arthanari S, Kiri S, Mount J, Barry J et al. Predicting disease progression and poor outcomes in patients with moderately active rheumatoid arthritis: a systematic review. Rheumatol Adv Pract. 2019;3(1): rkz002. doi:10.1093/rap/rkz002
16. Muñoz-Fernandez S, Oton-Sanchez T, Carmona L, Calvo-Alen J, Escudero A, Narvaez J et al. Use of prognostic factors of rheumatoid arthritis in clinical practice and perception of their predictive capacity before and after exposure to evidence. Rheumatol Int. 2018;38(12):2289–2296. doi:10.1007/s00296-018-4152-8
17. Smolen JS, Landewe RBM, Bijlsma JWJ, Burmester GR, Dougados M, Kerschbaumer A et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis. 2020;79(6):685–699. doi:10.1136/annrheumdis2019-216655
18. Prevoo ML, van t Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1995;38(1):44–48. doi:10.1002/art.1780380107
19. Ting G, Schneeweiss S, Katz JN, Weinblatt ME, Cabral D, Scranton RE et al. Performance of a rheumatoid arthritis recordsbased index of severity. J Rheumatol. 2005;32(9):1679–1687.
20. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111–188. doi:10.1093/eurheartj/ehz455
21. Agca R, Heslinga SC, Rollefstad S, Heslinga M, McInnes IB, Peters MJ et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann Rheum Dis. 2017;76(1):17–28. doi:10.1136/annrheumdis2016-209775
22. Kobalava ZD, KonradiAO, Nedogoda SV, Shlyakhto EV, Arutyunov GP, Baranova EI et al. Arterial hypertension in adults. Clinical guidelines 2020. Russian Journal of Cardiology. 2020;25(3):3786. doi:10.15829/1560-4071-2020-3-3786. In Russian.
23. Colaco K, Ocampo V, Ayala AP, Harvey P, Gladman DD, Piguet V et al. Predictive utility of cardiovascular risk prediction algorithms in inflammatory rheumatic diseases: a systematic review. J Rheumatol. 2020;47(6):928–938. doi:10.3899/jrheum.190261
24. Amaya-Amaya J, Sarmiento-Monroy JC, Mantilla RD, Pineda-Tamayo R, Rojas-Villarraga A, Anaya JM. Novel risk factors for cardiovascular disease in rheumatoid arthritis. Immunol Res. 2013;56(2–3):267–286. doi:10.1007/s12026-013-8398-7
25. Likhvantsev VV, Yadgarov MYa, Berikashvili LB, Kadantseva KK, Kuzovlev AN. Sample size estimation. Russian Journal of Anaesthesiology and Reanimatology. 2020;(6):77–86. doi:10.17116/anaesthesiology202006177. In Russian.
26. Hahn RG, Patel V, Dull RO. Human glycocalyx shedding: systematic review and critical appraisal. Acta Anaesthesiol Scand. 2021;65(5):590–606. doi:10.1111/aas.13797
27. Ikonomidis I, Pavlidis G, Katsimbri P, Lambadiari V, Parissis J, Andreadou I et al. Tocilizumab improves oxidative stress and endothelial glycocalyx: a mechanism that may explain the effects of biological treatment on COVID19. Food Chem Toxicol. 2020;145:111694. doi:10.1016/j.fct.2020.111694
28. Deyab G, Reine TM, Vuong TT, Jenssen T, Hjeltnes G, Agewall S et al. Antirheumatic treatment is associated with reduced serum syndecan1 in rheumatoid arthritis. PLoS One. 2021;16(7): e0253247. doi:10.1371/journal.pone.0253247
Supplementary files
Review
For citations:
Shimanski D.A., Nesterovich I.I., Inamova O.V., Lapin S.V., Galkina O.V., Levykina E.N., Trophimov V.I., Vlasov T.D. Analysis of clinical and anamnestic factors affecting endothelial glycocalyx condition in patients with active rheumatoid arthritis. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2022;28(2):188-197. (In Russ.) https://doi.org/10.18705/1607-419X-2022-28-2-188-197