Vascular calcification and fibroblast growth factor in resistant hypertension
https://doi.org/10.18705/1607-419X-2022-28-2-157-166
Abstract
Background. Pathological vascular calcification in hypertension (HTN) is studied worldwide. The relationship between endothelial dysfunction (ED) and vascular wall calcification in HTN has been demonstrated, and an increase in the level of fibroblast growth factor (FGF23) is considered one of the contributing factors. The aim of the study was to assess the incidence and severity of thoracic aortic calcification, and its relationship with fibroblast growth factor and ED in patients with resistant HTN.
Design and methods. Ninety-two patients with resistant HTN were included. All of them underwent: 24-hour blood pressure monitoring (ABPM), the assessment ofendothelial function, the thoracic aortic calcium (TAC) index using multispiral computed tomography, and the level of FGF23.
Results. According to the results of ABPM, patients were divided into group 1 with controlled HTN (n = 44) and group 2 with uncontrolled (n = 48) resistant HTN. In the 2nd group, there was an increase in TAC and ED, in both groups, changes in the blood flow velocity were recorded. There were no significant differences in FGF23 levels between the groups. We found a positive relationship between TAC and pulse pressure according to the results of ABPM (r = 0,49, p = 0,007), HTN duration (r = 0,68, p = 0,04) and a negative relationship with the duration of regular antihypertensive therapy (r = –0,33, p = 0,02). In addition, participants with higher FGF23 levels were older (r = 0,663, p = 0,006) and had a longer history of HTN (r = 0,57, p = 0,03).
Conclusions. In patients with resistant HTN, ED and calcification of the thoracic aorta are more pronounced when the target blood pressure level is not achieved. The level of FGF23 is associated with an increase in the resistance indices assessed by dopplerography of the brachial artery and the severity of calcification of the thoracic aorta.
About the Authors
M. S. LitvinovaRussian Federation
Marina S. Litvinova, MD, Post-Graduate Student, Rostov State Medical University, Cardiologist, Clinical Diagnostic Center “Health”
8, 21st line, Rostov-on-Don, 347532
L. A. Khaisheva
Russian Federation
Larisa A. Khaisheva, MD, PhD, Associate Professor, Department of Therapy
Rostov-on-Don
S. V. Shlyk
Russian Federation
Sergey V. Shlyk, MD, PhD, DSc, Professor, Head, Department of Therapy
Rostov-on-Don
I. A. Aboyan
Igor A. Aboyan, MD, PhD, Head
Rostov-on-Don
References
1. Lee SJ, Lee IK, Jeon JH. Vascular calcification-new insights into its mechanism. Int J Mol Sci. 2020;21(8):2685. doi:10.3390/ijms21082685
2. Cozzolino M, Ciceri P, Galassi A, Mangano M, Carugo S, Capelli I et al. The key role of phosphate on vascular calcification. Toxins (Basel). 2019;11(4):213. doi:10.3390/toxins11040213
3. Tsakali SS, Shanahan CM. Calcinosis: insights from other calcinoses. Curr Opin Rheumatol. 2020;32(6):472–478. doi:10.1097/BOR.0000000000000746
4. Zhang Y, Lacolley P, Protogerou AD, Safar ME. Arterial stiffness in hypertension and function of large arteries. Am J Hypertens. 2020;33(4):291–296. doi:10.1093/ajh/hpz193
5. Moon I, Jin KN, Kim HL, Suh HJ, Lim WH, Seo JB et al. Association of arterial stiffness with aortic calcification and tortuosity. Medicine (Baltimore). 2019;98(33): e16802. doi:10.1097/MD.0000000000016802
6. Barbarash OL, Kashtalap VV, Shibanova IA, Kokov AN. Fundamental and practical aspects of coronary artery calcification. Russ J Cardiol. 2020;25(3S):4005. doi:10.15829/1560-4071-2020-4005. In Russian.
7. Pedrosa JF, Brant LCC, de Aquino SA, Ribeiro AL, Barreto SM. Segmental evaluation of thoracic aortic calcium and their relations with cardiovascular risk factors in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Cells. 2021;10(5):1243. doi:10.3390/cells10051243
8. Giachelli CM. Vascular calcification mechanisms. J Am Soc Nephrol. 2004;15(12):2959–2964. doi:10.1097/01.ASN.0000145894.57533.C4
9. Yuan C, Ni L, Zhang C, Hu X, Wu X. Vascular calcification: New insights into endothelial cells. Microvasc Res. 2021;134:104105. doi:10.1016/j.mvr.2020.104105
10. Milovanova LY, Dobrosmyslov IA, Milovanov YS, Fomin VV, Taranova MV, Kozlov VV et al. Fibroblast growth factor23 (FGF23) / soluble Klotho protein (sKlotho) / sclerostin glycoprotein ratio disturbance—is a novel risk factor for cardiovascular complications in ESRD patients receiving treatment with regular hemodialysis or hemodiafiltration. Ther Arch. 2018;90(6):48–54. doi:10.26442/terarkh201890648-54. In Russian.
11. Isakova T, Cai X, Lee J, Mehta R, Zhang X, Yang W et al.; CRIC Study Investigators. Longitudinal evolution of markers of mineral metabolism in patients with CKD: the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis. 2020;75(2):235– 244. doi:10.1053/j.ajkd.2019.07.022
12. Ghosh S, Luo D, He W, Chen J, Su X, Huang H. Diabetes and calcification: the potential role of anti-diabetic drugs on vascular calcification regression. Pharmacol Res. 2020;158:104861. doi:10.1016/j.phrs.2020.104861
13. Hori M, Kinoshita Y, Taguchi M, Fukumoto S. Phosphate enhances Fgf23 expression through reactive oxygen species in UMR106 cells. J Bone Miner Metab. 2016;34(2):132–139. doi:10.1007/s00774-015-0651-9
14. Akhabue E, Montag S, Reis JP, Pool LR, Mehta R, Yancy CW et al. FGF23 (Fibroblast Growth Factor23) and incident hypertension in young and middle-aged adults: the CARDIA Study. Hypertension. 2018;72(1):70–76. doi:10.1161/HYPERTENSIONAHA.118.11060
15. Silswal N, Touchberry CD, Daniel DR, McCarthy DL, Zhang S, Andresen J et al. FGF23 directly impairs endotheliumdependent vasorelaxation by increasing superoxide levels and reducing nitric oxide bioavailability. Am J Physiol Endocrinol Metab. 2014;307(5):E426–E436. doi:10.1152/ajpendo.00264.2014
16. Six I, Flissi N, Lenglet G, Louvet L, Kamel S, Gallet M et al. Uremic toxins and vascular dysfunction. Toxins (Basel). 2020;12(6):404. doi:10.3390/toxins12060404В
17. Freundlich M, Gamba G, Rodriguez-Iturbe B. Fibroblast growth factor 23-Klotho and hypertension: experimental and clinical mechanisms. Pediatr Nephrol. 2021;36(10):3007–3022. doi:10.1007/s00467-020-04843-6
18. Poredos P, Jezovnik MK. Structure of atherosclerotic plaques in different vascular territories: clinical relevance. Curr Vasc Pharmacol. 2018;16(2):125–129. doi:10.2174/1570161115666170227103125
19. Durham AL, Speer MY, Scatena M, Giachelli CM, Shanahan CM. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res. 2018;114(4):590–600. doi:10.1093/cvr/cvy010
20. Gurung R, Choong AM, Woo CC, Foo R, Sorokin V. Genetic and epigenetic mechanisms underlying vascular smooth muscle cell phenotypic modulation in abdominal aortic aneurysm. Int J Mol Sci. 2020;21(17):6334. doi:10.3390/ijms21176334
21. Obisesan OH, Osei AD, Berman D, Dardari ZA, Uddin SMI, Dzaye O et al. Thoracic aortic calcium for the prediction of stroke mortality (from the coronary artery calcium consortium). Am J Cardiol. 2021;148:16–21. doi:10.1016/j.amjcard.2021.02.038
22. Tesauro M, Mauriello A, Rovella V, AnnicchiaricoPetruzzelli M, Cardillo C, Melino G et al. Arterial ageing: from endothelial dysfunction to vascular calcification. J Intern Med. 2017;281(5):471–482. doi:10.1111/joim.12605
23. Van den Bergh G, Opdebeeck B, D’Haese PC, Verhulst A. The vicious cycle of arterial stiffness and arterial media calcification. Trends Mol Med. 2019;25(12):1133–1146. doi:10.1016/j.molmed.2019.08.006
24. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018;36(10):1953–2041. doi:10.1097/HJH.0000000000001940.
25. Kobalava ZD, KonradiAO, Nedogoda SV, Shlyakhto EV, Arutyunov GP, Baranova EI et al. Arterial hypertension in adults. Clinical guidelines 2020. Russian Journal of Cardiology. 2020;25(3):3786. doi:10.15829/1560-4071-2020-3-3786. In Russian.
26. Celermajer DS, Sorensen KE, Cooh VM, Spiegelhalter DJ, Miller OI, Sullivan ID et al. Non-invasive detection of endothelial dysfunction in children and adult at risk of attherosclerosis. Lancet. 1992;340(8828):1111–1115.
27. Rumberger JA, Brundage BH, Rader DJ, Kondos G. Electron beam computed tomography coronary calcium scanning: a review and guidelines for use in asymptomatic persons. Mayo Clin Proc. 1999;74(3):243–252.
28. Alsharari R, Lip GYH, Shantsila A. Assessment of arterial stiffness in patients with resistant hypertension: additional insights into the pathophysiology of this condition? Am J Hypertens. 2020;33(2):107–115. doi:10.1093/ajh/hpz169
29. Pedrosa JF, Barreto SM, Bittencourt MS, Ribeiro ALP. Anatomical references to evaluate thoracic aorta calcium by computed tomography. Curr Atheroscler Rep. 2019;21(12):51. doi:10.1007/s11883-019-0811-9
30. Egshatyan LV, Mokrysheva NG. Ectopic calcification in chronic kidney disease. Part 2. The methods of diagnostics and the effectiveness of therapy. Nephrology. 2018;22(2):50–58. doi:10.24884/1561-6274-2018-22-2-50-58. In Russian.
31. Joly L, Mandry D, Verger A, Labat C, Watfa G, Roux V et al. Influence of thoracic aortic inflammation and calcifications on arterial stiffness and cardiac function in older subjects. J Nutr Health Aging. 2016;20(3):347–354. doi:10.1007/s12603-015-0574-0
32. Gaddum NR, Keehn L, Guilcher A, Gomez A, Brett S, Beerbaum P et al. Altered dependence of aortic pulse wave velocity on transmural pressure in hypertension revealing structural change in the aortic wall. Hypertension. 2015;65(2):362–369. doi:10.1161/HYPERTENSIONAHA.114.04370
33. Cho IJ, Chang HJ, Park HB, Heo R, Shin S, Shim CY et al. Aortic calcification is associated with arterial stiffening, left ventricular hypertrophy, and diastolic dysfunction in elderly male patients with hypertension. J Hypertens. 2015;33(8):1633–1641. doi:10.1097/HJH.0000000000000607
34. Hermann DM, Lehmann N, Gronewold J, Bauer M, Mahabadi AA, Weimar C et al.; Heinz Nixdorf Recall Study Investigative Group. Thoracic aortic calcification is associated with incident stroke in the general population in addition to established risk factors. Eur Heart J Cardiovasc Imaging. 2015;16(6):684–690. doi:10.1093/ehjci/jeu293
35. Chung CM, Cheng HW, Chang JJ, Lin YS, Hsiao JF, Chang ST et al. Relationship between resistant hypertension and arterial stiffness assessed by brachial-ankle pulse wave velocity in the older patient. Clin Interv Aging. 2014;9:1495–1502.
36. Muela HCS, Costa-Hong VA, Yassuda MS, Machado MF, Nogueira RC, Moraes NC et al. Impact of hypertension severity on arterial stiffness, cerebral vasoreactivity, and cognitive performance. Dement Neuropsychol. 2017;11(4):389–397. doi:10.1590/1980-57642016dn11-040008
37. Ato D, Sawayama T. Factors associated with high brachial-ankle pulse wave velocity in non-hypertensive and appropriately treated hypertensive patients with atherosclerotic risk factors. Vasc Health Risk Manag. 2017;13:383–392. doi:10.2147/VHRM.S144923
38. Tomiyama H, Komatsu S, Shiina K, Matsumoto C, Kimura K, Fujii M et al. Effect of wave reflection and arterial stiffness on the risk of development of hypertension in Japanese men. J Am Heart Assoc. 2018;7(10):e008175. doi:10.1161/JAHA.117.008175
39. Cai A, Siddiqui M, Judd EK, Oparil S, Calhoun DA. Aortic blood pressure and arterial stiffness in patients with controlled resistant and non-resistant hypertension. J Clin Hypertens (Greenwich). 2020;22(2):167–173. doi:10.1111/jch.13826
Review
For citations:
Litvinova M.S., Khaisheva L.A., Shlyk S.V., Aboyan I.A. Vascular calcification and fibroblast growth factor in resistant hypertension. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2022;28(2):157-166. (In Russ.) https://doi.org/10.18705/1607-419X-2022-28-2-157-166