Prognostic significance of geometric patterns of left ventricular hypertrophy in a 12-year cohort study
https://doi.org/10.18705/1607-419X-2022-28-5-532-545
Abstract
Objective. The contribution of left ventricular hypertrophy (LVH) to the risk of cardiovascular disease (CVD) and mortality is well established but the prognostic role of structural LVH patterns in the population is ambiguous. The aim of the work — to study the prognostic value of geometric variants of LVH in a 12-year cohort study.
Design and methods. The study design—cross-sectional and cohort studies—based on the material from a series of echocardiographic examinations (Echo) in general population samples in Novosibirsk city. The cohort analysis included 2006 men and women 25–64 years old with special concerns about LVH (according to the criterion of increased myocardial mass index (IMM)) and for geometric variants of LVH. The mean follow-up period was of 12,2 years (SD = 3,2) and 220 endpoints (90 CVD deaths) were registered. The risk of incident fatal and nonfatal CVD and death was assessed by Cox regression analysis.
Results. In the studied sample, the prevalence of LVH was of 22,8% (lower in men than in women, p < 0,001). Population-specific criteria for increased IMM were 124 g/m2 (men) and 100 g/m2 (women). LVH independently increased the 12-year risk of myocardial infarction (MI) by 1,8 times, fatal MI — by 2 times, fatal CVD — by 1,8 times and all-cause mortality — by 1,6 times. Concentric and disproportional septal forms of LVH (DS LVH) had the most unfavorable prognosis; 40–80% of the excess-risk of CVD and death in these variants was explained by myocardial mass, but the impact of DS LVH was maintained independently of left ventricle myocardial mass. The pattern of segmental LVH (based on additional 2D measurement of the thickest segment) increased the risk of CVD and mortality by 1,9–2,5 times in men.
Conclusions. In a population sample aged 25–64 years (Novosibirsk), LVH independently increased the 12-year risk of MI, fatal CVD and death from all causes by 1,6–2 times. Among the geometric types of LVH, concentric and DS LVH had the most unfavorable prognostic value; the impact of DS LVH to the risk of fatal CVD remained significant independently of myocardial mass. The pattern of segmental LVH based on additional 2D Echo measurements, increased the risk of CVD and death by 2–2,5 times. CVD risk and mortality levels depending on the LVH patterns suggest a number of preventive measures against cardiovascular complications and mortality.
Keywords
About the Authors
A. N. RyabikovRussian Federation
Andrey N. Ryabikov, MD, PhD, Professor, Chief Researcher Laboratory of Ethiopathogenesis and Clinics of Internal Diseases
175/1 B. Bogatkova street, Novosibirsk, 630089
S. G. Shakhmatov
Russian Federation
Sergej G. Shakhmatov, MD, MSc, Senior Researcher, Laboratory of Ethiopathogenesis and Clinics of Internal Diseases
Novosibirsk
E. V. Mazdorova
Russian Federation
Ekaterina V. Mazdorova, MD, MSc, Researcher, Laboratory of Ethiopathogenesis and clinics of internal diseases
Novosibirsk
V. P. Guseva
Russian Federation
Varvara P. Guseva , MD, Junior Researcher, Laboratory of Ethiopathogenesis and clinics of internal diseases
Novosibirsk
G. I. Simonova
Russian Federation
Galina I. Simonova, MD, PhD, Professor, Chief Researcher Laboratory of Ethiopathogenesis and clinics of internal diseases
Novosibirsk
V. V. Gafarov
Russian Federation
Valery V. Gafarov, MD, PhD, Professor, Head of the Laboratory Psychological and Social Problems of Internal Diseases
Novosibirsk
E. G. Verevkin
Eugeny G. Verevkin, MD, MSc, Researcher, Laboratory of Ethiopathogenesis and Clinics of Internal Diseases
Novosibirsk
S. K. Malyutina
Russian Federation
Sofia K. Malyutina, MD, PhD, Professor, Head of the Laboratory of Ethiopathogenesis and Clinics of Internal Diseases
Novosibirsk
References
1. A global brief on hypertension. Silent killer, global public health crisis. World Health Organization (WHO). WHO/DCO/ WHD/2013.2. 2013. http://www.who.int/cardiovascular_diseases/publications/global_brief_hypertension/en/
2. Boytsov SA, Shalnova SA, Deev AD. The epidemiological situation as a factor determining the strategy for reducing mortality in the Russian Federation. Terapevticheskii Arkhiv = Ther Arch. 2020;92(1):4–9. In Russian. doi:10.26442/00403660.2020.01.000510.
3. NCD Risk Factor Collaboration. Worldwide trends in blood pressure from 1975 to 2015:a pooled analysis of 1479 populationbased measurement studies with 19.1 million participants. Lancet. 2017;389(10064):37–55. doi:10.1016/S0140-6736(16)31919-5
4. Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115mmHg, 1990–2015. JAMA. 2017; 317(2):165–182. doi:10.1001/jama.2016.19043
5. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R; Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360(9349):1903–1913. doi:10.1016/S0140-6736(02)11911-8
6. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M. 2018 ESC/ESH Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. 2018;39(33):3021–3104. doi:10.1097/HJH.0000000000001940
7. Arterial hypertension in adults. Clinical guidelines 2020. Russ J Cardiol. 2020;25(3):3786. doi:10.15829/1560-4071-2020-3-3786. In Russian.
8. Levy D, Garrison R, Savage D, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322(22):1561–1566. doi:10.1056/NEJM199005313222203
9. Kannel WB. Epidemiology of cardiac hypertrophy. In: left ventricular hypertrophy. Ed Sheridan DJ. London. Churchill Livingstone. 1998. P.1–10.
10. Fernandes LP, Barreto ATF, Neto MG, Câmara EJN, Durães AR, Roever L et al. https://pubmed.ncbi.nlm.nih.gov/34190849/ — affiliation 4Prognostic power of conventional echocardiography in individuals without history of cardiovascular diseases: a systematic review and meta-analysis. Clinics. 2021;76: e2754. doi:10.6061/clinics/2021/e2754
11. Russian Society of Cardiology (RSC). 2020 Clinical practice guidelines for chronic heart failure. Russ J Cardiol. 2020;25(11):4083. doi:10.15829/1560-4071-2020-4083. In Russian.
12. Tadic M, Sala C, Carugo S, Mancia G, Grassi G, Cuspidi C. Myocardial strain in hypertension: a meta-analysis of two-dimensional speckle tracking echocardiographic studies. J Hypertens. 2021;39(10):2103–2112. doi:10.1097/HJH.000000000000289
13. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in Conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiography. 2005;18(12):1440– 1463. doi:10.1016/j.echo.2005.10.005
14. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233:270. doi:10.1093/ehjci/jev014
15. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986; 57(6):450–458. doi:10.1016/0002-9149(86)90771-x
16. Savage DD, Garrison RJ, Kannel WB, Levy D, Anderson SJ, Stokes J et al. The spectrum of left ventricular hypertrophy in a general population sample: the Framingham study. Circulation. 1987;75(1 Pt 2):126–133.
17. Krumholz HM, Larson M, Levy D. Prognosis of left ventricular geometric patterns in the Framingham Heart Study. J Am Coll Cardiol. 1995;25(4):879–884. doi:10.1016/0735-1097(94)00473-4
18. Lieb W, Gona P, Larson MG, Aragam J, Zile MR, Cheng S et al. The natural history of left ventricular geometry in the community: clinical correlates and prognostic significance of change in LV geometric pattern. JACC Cardiovasc Imaging. 2014;7(9):870– 878. doi:10.1016/j.jcmg.2014.05.008
19. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in men and women with essential hypertension. Ann Intern Med. 1991;114(5):345–352. doi:10.7326/0003-4819-114-5-345
20. Choi YJ, Park JB, Park CS, Hwang I, Yoon YE, Lee SP et al. Prognostic implications of left ventricular mass geometry in patients with no or nonobstructive coronary artery disease. BMC Cardiovasc Disord. 2021;21(1):187. doi:10.1186/s12872-021-02005-6
21. Fox E, Taylor H, Andrew M, Han H, Mohamed E, Garrison R et al. Body mass index and blood pressure influences on left ventricular mass and geometry in African-Americans. Hypertension. 2004;44(1):55–60. doi:10.1161/01.HYP.0000132373.26489.58
22. Verdecchia P, Angeli F, Mazzotta G, Bartolini C, Garofoli M, Aita A et al. Impact of chamber dilatation on the prognostic value of left ventricular geometry in hypertension. J Am Heart Assoc. 2017;6(6): e005948. doi:10.1161/JAHA.117.005948
23. Li T, Yang J, Guo Xi, Chen S, Sun Y. Geometrical and functional changes of left heart in adults with prehypertension and hypertension: a cross-sectional study from China. BMC Cardiovasc Disord. 2016;16:114. doi:10.1186/s12872-016-0286-3
24. Lind L, Sundström J. Change in left ventricular geometry over 10 years in the elderly and risk of incident cardiovascular disease. J Hypertens. 2019;37(2):325–30. doi:10.1097/HJH.0000000000001897
25. Desai CS, Bartz TM, Gottdiener JS, Lloyd-Jones DM, Gardin JM. Usefulness of left ventricular mass and geometry for determining 10-year prediction of cardiovascular disease in adults aged 465 years (from the Cardiovascular Health Study). Am J Cardiol. 2016;118(5):684–690. doi:10.1016/j.amjcard.2016.06.016
26. Armstrong AC, Jacobs DR, Gidding SS, Colangelo LA, Gjesdal O, Lewis CE et al. Framingham score and LV mass predict events in young adults: CARDIA study. Int J Cardiol. 2014;172(2):350–355. doi:10.1016/j.ijcard.2014.01.003
27. Lai CL, Chien KL, Hsu HC, Su TC, Chen MF, Lee YT. Left ventricular mass and risk of cardiovascular events and allcause death among ethnic Chinese-the Chin-Shan Community Cardiovascular Cohort Study. Int J Cardiol. 2011;149(3):347–352. doi:10.1016/j.ijcard.2010.02.015
28. Ghali JK, Liao Y, Cooper RS. Influence of left ventricular geometric patterns on prognosis in patients with or without coronary artery diseases. J Am Coll Cardiol. 1998;31(7):1635–1640. doi:10.1016/S0735-1097(98)00131-4
29. Devereux RB, Agabiti Rosei E, Dahlof B, Gosse P, Hahn RT, Okin PM et al. Regression of left ventricular hypertrophy as a surrogate end-point for morbid events in hypertension treatment trials. J Hypertens. 1996;14(2): S95–S101. doi:10.1097/00004872-199609002-00018
30. Devereux RB, Wachtell K, Gerdts E, Boman K, Nieminen MS, Papademetriou V et al. Prognostic significance of left ventricular mass change during treatment of hypertension. J Am Coll Cardiol. 2004;292(19):2350–2356. doi:10.1001/jama.292.19.2350
31. Hamasaki S, Al Suwaidi J, Higano ST, Miyauchi K, Holmes DR Jr, Lerman A. Attenuated coronary flow reserve and vascular remodelling in patients with hypertension and left ventricular hypertrophy. J Am Coll Cardiol. 2000;35(6):1654–1660. doi:10.1016/s0735-1097(00)00594-5
32. Frohlich ED. Fibrosis and ischemia: the real risks in hypertensive heart disease. Am J Hypertens. 2001;14(6 Pt 2): 194S 199S. doi:10.1016/s0895-7061(01)02088-x
33. Slama M, Susic D, Varagic J, Frohlich ED. Diastolic dysfunction in hypertension. Curr Opin Cardiol. 2002;17(4):368– 373. doi:10.1097/00001573-200207000-00008
34. Zabalgoitia M, Berning J, Koren MJ, Støylen A, Nieminen MS, Dahlöf B et al. Impact of coronary artery disease on left ventricular systolic function and geometry in hypertensive patients with left ventricular hypertrophy (the LIFE study). Am J Cardiol. 2001;88(6):646–650. doi:10.1016/s0002-9149(01)01807-0
35. Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Gattobigio R, Zampi I et al. Prognostic value of left ventricular mass and geometry in systemic hypertension with left ventricular hypertrophy. Am J Cardiol. 1996;78(2):197–202. doi:10.1016/s0002-9149(96)90395-1
36. Diaz T, Pencina MJ, Benjamin EJ, Aragam J, Fuller DL, Pencina KM et al. Prevalence, clinical correlates and prognosis of discrete upper septal thickening on echocardiography: the Framingham Heart Study. Echocardiography. 2009;26(3):247–253. doi:10.1111/j.1540-8175.2008.00806.x
37. Gao L, Ma W, Li M, Yang Y, Qi L, Zhang B et al. Association between basal septal hypertrophy and left ventricular geometry in a community population. Research Square. 2022. doi:10.21203/rs.3.rs1230429/v1
38. Loncaric F, Nunno L, Mimbrero M, Marciniak M, Fernandes JF, Tirapu L et al. Basal ventricular septal hypertrophy in systemic hypertension. Am J Cardiol. 2020;125(9):1339–1346. doi:10.1016/j.amjcard.2020.01.045
39. Di Tullio MR, Zwas DR, Sacco RL, Sciacca RR, Homma S. Left ventricular mass and geometry and the risk of ischemic stroke. Stroke. 2003;34(10):2380–2384. doi:10.1161/01.STR.0000089680.77236.60
40. Guseva VP, Ryabikov AN, Voronina EV, Malyutina SK. The changes of left ventricular longitudinal systolic function depending on hypertension and its control: analysis in a population. Kardiologiia = Cardiology. 2020;60(7):36–43. doi:10.18087/cardio.2020.7.n932. In Russian.
Supplementary files
Review
For citations:
Ryabikov A.N., Shakhmatov S.G., Mazdorova E.V., Guseva V.P., Simonova G.I., Gafarov V.V., Verevkin E.G., Malyutina S.K. Prognostic significance of geometric patterns of left ventricular hypertrophy in a 12-year cohort study. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2022;28(5):532-545. (In Russ.) https://doi.org/10.18705/1607-419X-2022-28-5-532-545