Preview

Артериальная гипертензия

Расширенный поиск

Биохимические и молекулярно-генетические маркеры повреждения почек при артериальной гипертензии

https://doi.org/10.18705/1607-419X-2022-28-6-614-626

Аннотация

В настоящем обзоре представлены результаты исследований в области изучения ассоциаций биохимических и молекулярно-генетических маркеров повреждения почек при артериальной гипертензии. Использованы сведения по теме из публикаций баз данных PubMed, Google Scholar.

Об авторах

А. Н. Спиридонов
Научно-исследовательский институт терапии и профилактической медицины — филиал Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук»
Россия

Спиридонов Александр Николаевич — врач-ординатор по специальности «Кардиология» НИИТПМ – филиал ИЦиГ СО РАН

ул. Бориса Богаткова, д. 175/1, Новосибирск, 630089.

 



А. Д. Худякова
Научно-исследовательский институт терапии и профилактической медицины — филиал Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук»
Россия

Худякова Алена Дмитриевна — кандидат медицинских наук, руководитель лаборатории генетических и средовых де- терминант жизненного цикла человека НИИТПМ – филиал ИЦиГ СО РАН

Новосибирск



Е. В. Стрюкова
Научно-исследовательский институт терапии и профилактической медицины — филиал Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук»
Россия

Стрюкова Евгения Витальевна — кандидат медицинских наук, научный сотрудник лаборатории клинических биохимических и гормональных исследований терапевтических заболеваний НИИТПМ – филиал ИЦиГ СО РАН

Новосибирск



Список литературы

1. Seccia TM, Caroccia B, Calò LA. Hypertensive nephropathy. Moving from classic to emerging pathogenetic mechanisms. J Hypertens. 2017;35(2):205–212. doi:10.1097/HJH.0000000000001170

2. Hart PD, Bakris GL. Hypertensive nephropathy: prevention and treatment recommendations. Expert Opin Pharmacother. 2010;11(16):2675–2686. doi.org/10.1517/14656566.2010.485612

3. Johnson RJ, Feehally J, Floege J. Comprehensive clinical nephrology E-Book. Elsevier Health Sci. 2014.

4. Bailie GR, Massry SG, National Kidney Foundation. Clinical practice guidelines for bone metabolism and disease in chronic kidney disease: an overview. Pharmacotherapy. 2005;25(12):1687– 1707. doi:10.1592/phco.2005.25.12.1687

5. Батюшин М. М. Методические основы оценки скорости клубочковой фильтрации в урологической практике. Вестник урологии. 2017;1:42–51 doi: 10.21886/2306-6424-2017-5-1-42-51

6. Пименов Л. Т. Различные методы оценки скорости клубочковой фильтрации у практически здоровых лиц. Здоровье, демография, экология финно-угорских народов. 2017;3:85–89

7. Andrassy КM. Comments on “KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease”. Kidney Int. 2013;84(3):622–623. doi:10.1038/ki.2013.243

8. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI et al. Chronic Kidney Disease Epidemiology Collaboration. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–612. doi:10.7326/0003-4819150-9-200905050-00006

9. Stevens LA, Schmid CH, Greene T, Zhang YL, Beck GJ, Froissart M et al. Comparative performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study equations for estimating GFR levels above 60 mL/min/1,73 m2. Am J Kidney Dis. 2010;56(3):486–495. doi:10.1053/j.ajkd.2010.03.026

10. Hallan S, Asberg A, Lindberg M, Johnsen H. Validation of the Modification of Diet in Renal Disease formula for estimating GFR with special emphasis on calibration of the serum creatinine assay. Am J Kidney Dis. 2004;44(1):84–93. doi:10.1053/j.ajkd.2004.03.027

11. Fuchs TC, Hewitt P. Preclinical perspective of urinary biomarkers for the detection of nephrotoxicity: what we know and what we need to know. Biomark Med. 2011;5(6):763–779. doi:10.2217/bmm.11.86

12. Кузьмин О. Б. Раннее выявление тубулоинтерстициального повреждения почек у пациентов с артериальной гипертензией: сравнительная оценка биомаркеров NGAL и KIM-1 мочи. Артериальная гипертензия. 2019;25(4):407–415

13. Allegretti AS, Parada XV, Endres P, Zhao S, Krinsky S, Hillien SA et al. Urinary NGAL as a diagnostic and prognostic marker for acute kidney injury in cirrhosis: a prospective study clinical and translational gastroenterology. Clin Transl Gastroenterol. 2021;12(5):e00389. doi:10.14309/ctg.0000000000000359

14. Zdziechowska M, Gluba-Brzozka A, Poliwczak AR, Franczyk B, Kidawa M, Zielinska M et al. Serum NGAL, KIM-1, IL-18, L-FABP: new biomarkers in the diagnostics of acute kidney injury following invasive cardiology procedures. Int Urol Nephrol. 2020;52(11):2135–2143. doi:10.1007/s11255-020-02530-x

15. Lei L, Li LP, Zeng Z, Mu JX, Yang X, Zhou C et al. Value of urinary KIM-1 and NGAL combined with serum Cys C for predicting acute kidney injury secondary to decompensated cirrhosis. Sci Rep. 2018;8(1):1–9. doi:10.1038/s41598-018-26226-6

16. Buonafine M, Martinez-Martinez E, Jaisser F. More than a simple biomarker: the role of NGAL in cardiovascular and renal diseases. Clin Sci. 2018;132(9): 909–923. doi.org/10.1042/CS20171592

17. Shankar A, Teppala S. Relationship between serum cystatin C and hypertension among US adults without clinically recognized chronic kidney disease. J Am Soc Hypertens. 2011;5(5): 378–384. doi:10.1016/j.jash.2011.03.003

18. Wali U, Mazhar Hussain M, Wali N, Nadeem A, Majeed F. Comparison of serum levels of cystatin-C and traditional renal biomarkers for the early detection of pre-hypertensive nephropathy. JPMA. J Pakistan Med Assoc. 2019;69(3):313–319. PMID: 30890820.

19. Яркова Н. А. Цистатин С в диагностике хронической болезни почек у больных сахарным диабетом 2-го типа. Современные технологии в медицине. 2013;5(4):89–93

20. Zhang L, Sun J, Zhang M, Lin Y, Fang L, Fang X et al. The significance of combined detection of CysC, urinary mAlb and β2-MG in diagnosis of the early renal injury in pregnancy-induced hypertension syndrome. Saudi J Biolog Sci. 2019;26(8):1982–1985. doi:10.1016/j.sjbs.2019.07.013

21. Климонтов В. В., Еременко Н. В., Мякина Н. Е., Фазуллина О. Н. Цистатин С и коллаген IV типа в диагностике хронической болезни почек у больных сахарным диабетом 2-го типа. Сахарный диабет. 2015;1:87–9doi:10.14341/DM2015187-93

22. Iida M, Yamamoto M, Ishiguro YS, Yamazaki M, Ueda N, Honjo H et al. Urinary type IV collagen is related to left ventricular diastolic function and brain natriuretic peptide in hypertensive patients with prediabetes. J Diabetes Complications. 2014;28(6):824–830. doi:10.1016/j.jdiacomp.2014.08.005

23. Sand JMB, Genovese F, Karsdal MA. Type IV collagen. Biochemistry of collagens, laminins and elastin. Academic Press. 2016;31–41. doi:10.1016/B978-0-12-809847-9.00004-0

24. Шулькина С. Г., Смирнова Е. Н. Диагностическое значение цистатина С и коллагена IV типа у больных артериальной гипертензией и ожирением. Артериальная гипертензия. 2017;23(6):552–560 doi:10.18705/1607-419X-2017-23-6-552-560

25. Enomoto D, Okura T, Nagao T, Jotoku M, Irita J, Miyoshi K et al. Relationship between renal hemodynamics and urinary type IV collagen in patients with essential hypertension. Clin Exp Hypertens. 2012;34(8):612–616. doi:10.3109/10641963.2012.683911

26. Sato E, Wang AY, Satoh M, Nishikiori Y, Oba-Yabana I, Yoshida M et al. Urinary angiotensinogen excretion level is associated with elevated blood pressure in the normotensive general population. Am J Hypertens. 2018;31(6):742–749. doi:10.1093/ajh/hpy020

27. Zhuang Z, Bai Q, AL, Liang Y, Zheng D, Wang Y. Increased urinary angiotensinogen precedes the onset of albuminuria in normotensive type 2 diabetic patients. Int J Clin Experiment Pathol. 2015;8(9):11464–11469.

28. Kim HY, Choi HS, Kim CS, Bae EH, Ma SK, Sung SA et al. Effect of urinary angiotensinogen and high-salt diet on blood pressure in patients with chronic kidney disease: results from the Korean Cohort Study for Outcome in Patients with Chronic Kidney Disease (KNOW-CKD). The Korean J Int Med. 2021;36(3):659– 667. doi:10.3904/kjim.2020.077

29. Stenvinkel P, Barany P, Heimburger O, Pecoits-Filho R, Lindholm B. Mortality, malnutrition, and atherosclerosis in esrd: What is the role of interleukin-6? Kidney Int Suppl. 2002;(80):103– 108. doi:10.1046/j.1523–1755.61.s80.19.x

30. Zhang W, Wang W, Yu H, Zhang Y, Dai Y, Ning C et al. Interleukin 6 underlies angiotensin II-induced hypertension and chronic renal damage. Hypertension. 2012;59(1):136–144. doi:10.1046/j.1523-1755.61.s80.19.x

31. Wang R, Hu H, Hu S, He H, Shui H. β2-microglobulin is an independent indicator of acute kidney injury and outcomes in patients with intracerebral hemorrhage. Medicine. 2020;99(8): e19212. doi:10.1097/MD.0000000000019212

32. Aksun SA, Ozmen D, Ozmen B, Parildar Z, Mutaf I, Turgan N et al. Beta2-microglobulin and cystatin C in type 2 diabetes: assessment of diabetic nephropathy. Exp Clin Endocrinol Diabetes. 2004;112(4):195–200. doi:10.1055/s-2004-817933

33. Стахова Т. Ю., Щербак А. В., Козловская Л. В., Таранова М. В., Балкаров И. М. Клиническое значение определения маркеров дисфункции эндотелия (эндотелин-1, микроальбуминурия) и поражения тубулоинтерстициальной ткани (Β2-микроглобулин, моноцитарный хемотаксический белок-1) у пациентов с артериальной гипертонией и нарушением обмена мочевой кислоты. Терапевтический архив. 2014;86(6):45–51

34. Chen H, Li H. Clinical implication of cystatin C and β2microglobulin in early detection of diabetic nephropathy. Clin Lab. 2017;63(20):241–247. doi:10.7754/clin.lab.2016.160719

35. Потапов В. Е. Современные представления о роли эпителиально-мезенхимального перехода в прогрессии хронической болезни почек. Кубанский научный медицинский вестник. 2016;6:104–109

36. Meng X, Zhang Y, Huang XR, Ren GI, Li J, Lan HY. Treatment of renal fibrosis by rebalancing TGF-β/Smad signaling with the combination of asiatic acid and naringenin. Oncotarget. 2015;6(35):36984–36997. doi:10.18632/oncotarget.6100

37. Gu YY, Liu XS, Huang XR, Yu XQ, Lan GY. Diverse role of TGF-β in kidney disease. Front Cell Dev Biol. 2020;8:123. doi:10.3389/fcell.2020.00123

38. Gaedeke J, Peters H, Noble NA, Border WA. Angiotensin II, TGF-beta and renal fibrosis. Contrib Nephrol. 2001;(135):153–160. doi:10.1159/000060162

39. Suthanthiran M, Gerber LM, Schwartz JE, Sharma VK, Medeiros M, Marion R et al. Circulating transforming growth factorbeta1 levels and the risk for kidney disease in African Americans. Kidney Int. 2009;76(1):72–80. doi:10.1038/ki.2009.66

40. Cao J, Hou R, Lu J, Zhang K, Zhao C, Jiang H et al. The predictive value of β2-MG and TGF-β for elderly hypertensive nephropathy. Exp Ther Med. 2019:17(4):3065–3070. https://doi.org/10.3389/fcell.2020.00123

41. Stöhr R, Schuh A, Heine GH, Brandenburg V. FGF23 in cardiovascular disease: innocent bystander or active mediator? Front Endocrinol (Lausanne). 2018;9:351. doi:10.3389/fcell.2020.00123

42. Li JX, Yu GQ, Zhuang YZ. Impact of serum FGF23 levels on blood pressure of patients with chronic kidney disease. Eur Rev Med Pharmacol Sci. 2018;22(3):721–725. doi:10.26355/eurrev_201802_14299

43. Donate-Correa J, Muros de Fuentes M, Mora-Fernández C, Navarro-González JF. Pathophysiological implications of fibroblast growth factor-23 and klotho and their potential role as clinical biomarkers. Clin Chem. 2014;60(7):933–940. doi:10.1373/clinchem.2013.206649

44. Lindberg K, Amin R, Moe OW, Hu MC, Erben RG, Ostman Wernerson A et al. The kidney is the principal organ mediating klotho effects. J Am Soc Nephrol. 2014;25(10):2169–2175. doi:10.1681/ASN.2013111209

45. Lau WL, Leaf EM, Hu MC, Takeno MM, Kuro-o M, Moe OW et al. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 2012;82(12):1261–1270. doi:10.1038/ki.2012.322

46. Khodeir SA, Okda HI, Abdalal HM. Clinical significance of fibroblast growth factor-23 and soluble alpha klotho in different stages of chronic kidney disease. Saudi J Kidney Dis Transpl. 2019;30(1):108–118. PMID: 30804272

47. Hu MC, Shi M, Zhang J. Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective. Kidney Int. 2010;78(12):1240–1251. doi:10.1038/ki.2010.328

48. Kalaitzidis RG, Duni A, Siamopoulos KC. Klotho, the Holy Grail of the kidney: from salt sensitivity to chronic kidney disease. Int Urol Nephrol. 2016;48(10):1657–1666. doi:10.1007/s11255-016-1325-9

49. Neyra JA, Hu MC. Potential application of klotho in human chronic kidney disease. Bone. 2017;100:41–49. doi:10.1016/j.bone.2017.01.017

50. Usui R, Ogawa T, Takahashi H, Iwasaki C, Koike M, Morito T et al. Serum uromodulin is a novel renal function marker in the Japanese population. Clin Exp Nephrol. 2021;25(1):28–36. doi:10.1007/s10157-020-01964-y

51. Scherberich JE, Gruber R, Nockher WA, Christensen EI, Schmitt H, Herbst V et al. Serum uromodulin-a marker of kidney function and renal parenchymal integrity. Nephrol Dial Transplant. 2018;33(2):284–295. doi:10.1093/ndt/gfw422

52. Lv L, Wang J, Gao B, Wu L, Wang F, Cui Z. Serum uromodulin and progression of kidney disease in patients with chronic kidney disease. J Transl Med. 2018;16(1):1–9. doi:10.1186/s12967-018-1693-2

53. Хасун М., Каюков И. Г., Галкина О. В., Береснева О. Н., Парастаева М. М., Смирнов А. В. Уромодулин и экскреция ионов у пациентов с гломерулопатими. Нефрология. 2016;20(1):51–56

54. Gore MO, Lüneburg N, Schwedhelm E, Ayers CR, Anderssohn M, Khera A et al. Symmetrical dimethylarginine predicts mortality in the general population: observations from the Dallas heart study. Arterioscler Thromb Vasc Biol. 2013;33(11): 2682–2688. doi:10.1161/ATVBAHA.113.301219

55. Ковалькова Н. А., Худякова А. Д., Каштанова Е. В., Полонская Ю. В., Щербакова Л. В., Рагино Ю. И. Выявление потенциальных биомаркеров дисфункции почек при артериальной гипертензии у лиц 25–45 лет. Терапевтический архив. 2020;92(12):19–24 doi:10.26442/00403660.2020.12.200436

56. Kielstein JT, Salpeter SR, Bode-Boeger SM, Cooke JP, Fliser D. Symmetric dimethylarginine (SDMA) as endogenous marker of renal function — a meta-analysis. Nephrol Dial Transplant. 2006;21(9):2446–2451. doi:10.1093/ndt/gfl292

57. Fliser D, Kronenberg F, Kielstein JT, Morath C, BodeBöger SM, Haller H et al. Asymmetric dimethylarginine and progression of chronic kidney disease: the mild to moderate kidney disease study. J Am Soc Nephrol. 2005;16(8):2456–2461. doi:10.1681/ASN.2005020179

58. Potočnjak I, Radulović B, Degoricija V, Trbušić M, Pregartner G, Berghold A et al. Serum concentrations of asymmetric and symmetric dimethylarginine are associated with mortality in acute heart failure patients. Int J Cardiol. 2018;261:109–113. doi:10.1016/j.ijcard.2018.03.037

59. Thongboonkerd V. Study of diabetic nephropathy in the proteomic era. Contrib Nephrol. 2011;170:172–183. doi:10.1159/000325657

60. Emrich IE, Zawada AM, Martens-Lobenhoffer J, Fliser D, Wagenpfeil S, Heine GH et al. Symmetric dimethylarginine (SDMA) outperforms asymmetric dimethylarginine (ADMA) and other methylarginines as predictor of renal and cardiovascular outcome in non-dialysis chronic kidney disease. Clin Res Cardiol. 2018;107(3):201–213. doi:10.1007/s00392-017-1172-4

61. Henze A, Frey SK, Raila J, Scholze A, Spranger J, Weickert MO et al. Alterations of retinol-binding protein 4 species in patients with different stages of chronic kidney disease and their relation to lipid parameters. Biochem Biophys Res Commun. 2010;393(1):79–83. doi:10.1016/j.bbrc.2010.01.082

62. Blumczynski A, Sołtysiak J, Lipkowska K, Silska M, Poprawska A, Musielak A et al. Hypertensive nephropathy in children — do we diagnose early enough? Blood Press. 2012;21(4):233–239. doi:10.3109/08037051.2012.666393

63. Bobbert T, Raila J, Schwarz F, Mai K, Henze A, Pfeiffer AF et al. Relation between retinol, retinol-binding protein 4, transthyretin and carotid intima media thickness. Atherosclerosis. 2010;213(2):549–551. doi:10.1016/j.atherosclerosis

64. Solini A, Santini E, Madec S, Rossi C, Muscelli E. Retinolbinding protein-4 in women with untreated essential hypertension. Am J Hypertens. 2009;22(9):1001–1006. doi:10.1038/ajh.2009.116

65. Grosjean F, Esposito P, Maccarrone R, Libetta C, Dal Canton A, Rampino T. RBP4: a culprit for insulin resistance in end stage renal disease that can be cleared by hemodiafiltration. Biomed Res Int. 2017;2017:7270595. doi:10.1155/2017/7270595

66. Kim MJ, Lim NK, Park HY. Relationship between prehypertension and chronic kidney disease in middle-aged people in Korea: the Korean genome and epidemiology. BMC Public Health. 2012;12:960. doi:10.1186/1471-2458-12-960

67. Su Y, Huang Y, Jiang Y, Zhu M. The association between serum retinol-binding protein 4 levels and cardiovascular events in patients with chronic kidney disease. Lab Med. 2020;51(5):491–497. doi:10.1093/labmed/lmz104

68. Hamasaki Y, Doi K, Maeda-Mamiya R, Ogasawara E, Katagiri D, Tanaka T et al. A 5-hydroxytryptamine receptor antagonist, sarpogrelate, reduces renal tubulointerstitial fibrosis by suppressing PAI-1. Am J Physiol Renal Physiol. 2013;305(12):1796– 803. doi:10.1152/ajprenal.00151.2013

69. Кузьмин О. Б., Бучнева Н. В., Пугаева М. О. Почечные гемодинамические механизмы формирования гипертонической нефропатии. Нефрология. 2009;13(4):28–36 doi:10.24884/1561-6274-2009-134-28-36

70. Ishikawa A, Tanaka M, Ohta N, Ozono S, Kitamura T. Prevention of interstitial fibrosis of renal allograft by angiotensin II blockade. Transplant Proc. 2006;38(10):3498–3501. doi:10.1016/j.transproceed.2006.10.085

71. Choi KM, Lee JS, Kim EJ, Baik SH, Seo HS, Choi DS et al. Implication of lipocalin-2 and visfatin levels in patients with coronary heart disease. Eur J Endocrinol. 2008;158(2):203–207. doi:10.1530/EJE-07-0633

72. Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science. 2010;329(5993):841–845. doi:10.1126/science.1193032

73. Tzur S, Rosset S, Shemer R, Yudkovsky G, Selig S, Tarekegn A et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum Genet. 2010;128(3):345–350. doi:10.1007/s00439-010-0861-0

74. Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science. 2010;329(5993):841–845. doi:10.1126/science.1193032

75. Kopp JB, Nelson GW, Sampath K, Johnson RC, Genovese G, An P. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol. 2011;22(11):2129–2137. doi:10.1681/ASN.2011040388

76. Kasembeli AN, Duarte R, Ramsay M, Mosiane P, Dickens C, Dix-Peek T. APOL1 risk variants are strongly associated with HIVassociated nephropathy in Black South Africans. J Am Soc Nephrol. 2015;26(11):2882–2890. doi:10.1681/ASN.2014050469

77. Kanji Z, Powe CE, Wenger JB, Huang C, Ankers E, Sullivan DA et al. Genetic variation in APOL1 associates with younger age at hemodialysis initiation. J Am Soc Nephrol. 2011;22(11):2091–2097. doi:10.1681/ASN.2010121234

78. Tzur S, Rosset S, Skorecki K, Wasser WG. APOL1 allelic variants are associated with lower age of dialysis initiation and thereby increased dialysis vintage in African and Hispanic Americans with non-diabetic end-stage kidney disease. Nephrol Dial Transplant. 2012;27(4):1498–1505. doi:10.1093/ndt/gfr796

79. Ulasi I, Tzur S, Wasser WG, Shemer R, Kruzel E, Feigin E et al. High population frequencies of APOL1 risk variants are associated with increased prevalence of non-diabetic chronic kidney disease in the Igbo people from South-Eastern Nigeria. Nephron Clin Pract. 2013;123(1–2):123–128. doi:10.1159/000353223

80. Robinson TW, Freedman BI. APOL1 genotype, blood pressure, and survival in African Americans with nondiabetic nephropathy. Kidney Int. 2017;91(2):276–278. doi:10.1016/j.kint.2016.10.027

81. Mukamal KJ, Tremaglio J, Friedman DJ, Ix JH, Kuller LH, Tracy RP et al. APOL1 genotype, kidney and cardiovascular disease, and death in older adults. Arterioscler Thromb Vasc Biol. 2016;36(2):398–403. doi:10.1161/ATVBAHA.115.305970

82. Ito K, Bick AG, Flannick J, Friedman DJ, Genovese G, Parfenov MG et al. Increased burden of cardiovascular disease in carriers of APOL1 genetic variants. Circ Res. 2014;114(5):845–850. doi:10.1161/CIRCRESAHA.114.302347

83. Hughson MD, Hoy WE, Mott SA, Bertram JF, Winkler CA, Kopp JB. APOL1 risk variants independently associated with early cardiovascular disease death. Kidney Int Rep. 2018;3(1):89– 98. doi:10.1016/j.ekir.2017.08.007

84. Lipkowitz MS, Freedman BI, Langefeld CD, Comeau ME, Bowden DW, Kao WH et al. Apolipoprotein L1 gene variants associate with hypertension — attributed nephropathy and the rate of kidney function decline in African Americans. Kidney Int. 2013;83(1):114–120. doi:10.1038/ki.2012.263

85. Parsa A, Kao WH, Xie D, Astor BC, Li M, Hsu CY et al. APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med. 2013;369(23):2183–2196. doi:10.1056/NEJMoa1310345

86. Freedman BI, Hick PJ, Bostrom MA, Cunningham ME, Liu Y, Divers J et al. Polymorphisms in the non-muscle myosin heavy chain 9 gene (MYH9) are strongly associated with endstage renal disease historically attributed to hypertension in African Americans. Kidney Int. 2009;75(7):736–745. doi:10.1038/ki.2008.701

87. Bostrom MA, Lu L, Chou J, Hicks PJ, Xu J, Langefeld CD et al. Candidate genes for non-diabetic ESRD in African Americans: a genome-wide association study using pooled DNA. Hum Genet. 2010;128(2):195–204. doi:10.1007/s00439-010-0842-3.

88. Cooke JN, Bostrom MA, Hicks PJ, Ng MCY, Hellwege JN, Comeau ME et al. Polymorphisms in MYH9 are associated with diabetic nephropathy in European Americans. Nephrol Dial Transplant. 2012;27(4):1505–1511. doi:10.1093/ndt/gfr522

89. O’Seaghdha CM, Parekh RS, Hwang SJ, Li M, Kottgen A, Coresh J et al. The MYH9/APOL1 region and chronic kidney disease in European-Americans. Hum Mol Genet. 2011;20(12):2450–2456. doi:10.1093/hmg/ddr118

90. Tzur S, Rosset S, Shemer R, Yudkovsky G, Selig S, Tarekegn A et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum Genet. 2010;128(3):345–350. doi:10/1007/s00439-010-0861-0.

91. Freedman BI, Langefeld CD, Lu L, Divers J, Comeau ME, Kopp JB et al. Differential effects of MYH9 and APOL1 risk variants on FRMD 3 association with diabetic ESRD in African Americans. PLoS Genetics. 2011;7(6):e1002150. doi:10.1371/journal.pgen.1002150

92. Owiredu WKBA, Appiah M, Obirikorang C, Adu EA, Boima V, Amos-Abanyie EK et al. Association of MYH9-rs3752462 polymorphisms with chronic kidney disease among clinically diagnosed hypertensive patients: a case-control study in a Ghanaian population. Clin Hypertens. 2020;26:15. doi:10.1186/s40885-02000148-w

93. Freedman BI, Hicks PJ, Bostrom MA, Comeau ME, Divers J, Bleyer AJ et al. Non-muscle myosin heavy chain 9 gene MYH9 associations in African Americans with clinically diagnosed type 2 diabetes mellitus-associated ESRD. Nephrol Dial Transplant. 2009;24(11):3366–3371. doi:10.1093/ndt/gfp316

94. Boger CA, Gorski M, Li M, Hoffmann MM, Huang C,Yang Q et al. Association of eGFR-related loci identified by GWAS with incident CKD and ESRD. PLoS Genet. 2011;7(9):e1002292. doi: 10.1371/journal.pgen.1002292

95. Kottgen A, Glazer NL, Dehghan A, Hwang SJ, Katz R, Li M et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet. 2009;41(6):712–717. doi:10.1038/ng.377

96. Boger CA, Heid IM. Chronic kidney disease: novel insights from genome-wide association studies. Kidney Blood Press Res. 2011;34(4):225–234. doi:10.1159/000326901

97. Khalili H, Sull A, Sarin S, Boivin FJ, Halabi R, Svajger B et al. Developmental origins for kidney disease due to shroom3 deficiency. J Am Soc of Nephrol. 2016;27(10):2965–2973. doi:10.1681/ASN.2015060621

98. Prokop JW, Yeo NC, Ottmann C, Chhetri SB, Florus KL, Ross EJ et al. Characterization of coding/noncoding variants for SHROOM3 in patients with CKD. J Am Soc Nephrol. 2018;29(5):1525–1535. doi:10.1681/ASN.2017080856

99. Faul C, Donnelly M, Merscher-Gomez S, Chang Y, Franz S, Delfgaauw J et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med. 2008;14(9):931–938. doi:10.1038/nm.1857

100. Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 1998;273(7):4135–4142. doi:10.1074/jbc.273.7.4135

101. Кармакова Т. А. Молекула повреждения почек 1 (KIM-1): многофункциональный гликопротеин и биологический маркер (обзор). Современные технологии в медицине. 2021;13(3):64–80 doi:10.17691/stm2021.13.3.08

102. Egli P, Aeschbacher S, Bossard M, Eggimann L, Blum S, Meyre P et al. Relationships of kidney injury molecule-1 with renal function and cardiovascular risk factors in the general population. Clin Chim Acta. 2018;478:13–17. doi:10.1016/j.cca.2017.12.019

103. Meng XM, Tan PM, Li J, Lan HY. TGF-beta/Smad signaling in renal fibrosis. Front Physiol. 2015;6:82. doi:10.3389/fphys.2015.0008

104. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12(6):325–338. doi:10.1038/nrneph.2016.48

105. Chen CC, Geurts AM, Jacob HJ, Fan F, Roman RJ. Heterozygous knockout of transforming growth factor-beta1 protects Dahl S rats against high salt-induced renal injury. Physiol Genomics. 2013;45(3):110–118. doi:10.1152/physiolgenomics.00119.2012

106. Dahly AJ, Hoagland KM, Flasch AK, Jha S, Ledbetter SR, Roman RJ. Antihypertensive effects of chronic anti-TGF-beta antibody therapy in Dahl S rats. Am J Physiol Regul Integr Comp Physiol. 2002;283(3):757–767. doi:10.1152/ajpregu.00098.2002

107. Reeves WB, Andreoli TE. Transforming growth factor beta contributes to progressive diabetic nephropathy. Proc Natl Acad Sci USA. 2000;97(14):7667–7669. doi:10.1073/pnas.97.14.7667

108. Mai M, Jiang Y, Wu X, Liu G, Zhu Y, Zhu W. Association of TGF-β1, IL-4, and IL-10 polymorphisms with chronic kidney disease susceptibility: a meta-analysis. Front Genet. 2020;11:79. doi:10.3389/fgene.2020.00079

109. Jung SY, Choi JC, You SH, Kim WY. Association of Renin-angiotensin-aldosterone System Inhibitors With Coronavirus Disease 2019 (COVID-19)-related Outcomes in Korea:ANationwide Population-based Cohort Study. Clin Infect Dis. 2020;71(16):2121– 2128. doi:10.1093/cid/ciaa624

110. Prasad P, Tiwari AK, Kumar KMP, Ammini AC, Gupta A, Gupta R et al. Chronic renal insufficiency among Asian Indians with type 2 diabetes: I. Role of RAAS gene polymorphisms. BMC Med Genet. 2006;7:42. doi:10.1186/1471-2350-7-42

111. Smyth LJ, Cañadas-Garre M, Cappa RC, Maxwell AP, McKnight AJ. Genetic associations between genes in the reninangiotensin-aldosterone system and renal disease: a systematic review and meta-analysis. BMJ Open. 2019;9(4):e026777. doi:10.1136/bmjopen-2018-026777

112. Buraczynska M, Ksiazek P, Drop A, Zaluska W, Spasiewicz D, Ksiazek A. Genetic polymorphisms of the reninangiotensin system in end-stage renal disease. Nephrol Dial Transplant. 2006;21(4):979–983. doi:10.1093/ndt/gfk012

113. Takakura Y, Yoshida T, Yoshioka K, Umekawa T, Kogure A, Toda H et al. Angiotensinogen gene polymorphism (Met235Thr) infl visceral obesity and insulin resistance in obese Japanese women. Metabolism. 2006;55(6):819–824. doi:10.1016/j.metabol.2006.02.008

114. El-Garawani IM, Shaheen EM, El-Seedi HR, Khalifa SMA, Mersal GAM, Emara MM et al. Angiotensinogen gene missense polymorphisms (rs699 and rs4762): the association of end-stage renal failure risk with type 2 diabetes and hypertension in Egyptians. Genes (Basel). 2021;12(3):339. doi:10.3390/genes12030339

115. Lee SR, Moon JY, Lee SH, Ihm CG, Lee TW, Kim SK et al. Angiotensinogen polymorphisms and post-transplantation diabetes mellitus in Korean renal transplant subjects. Kidney Blood Press Res. 2013;37(2–3):95–102. doi:10.1159/000343404

116. Lévesque S, Moutquin JM, Lindsay C, Roy MC, Rousseau F. Implication of an AGT haplotype in a multigene association study with pregnancy hypertension. Hypertension. 2004;43(1):71–78. doi:10.1161/01.HYP.0000104525.76016.77


Дополнительные файлы

Рецензия

Для цитирования:


Спиридонов А.Н., Худякова А.Д., Стрюкова Е.В. Биохимические и молекулярно-генетические маркеры повреждения почек при артериальной гипертензии. Артериальная гипертензия. 2022;28(6):614-626. https://doi.org/10.18705/1607-419X-2022-28-6-614-626

For citation:


Spiridonov A.N., Khudiakova A.D., Striukova E.V. Biochemical and molecular genetic markers of kidney damage in hypertension. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2022;28(6):614-626. (In Russ.) https://doi.org/10.18705/1607-419X-2022-28-6-614-626

Просмотров: 873


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)