Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

Relationship between folate cycle genes polymorphisms and development of chronic heart failure in patients with hypertension and type 2 diabetes mellitus

https://doi.org/10.18705/1607-419X-2023-29-3-299-305

Abstract

Limited studies have been performed on the association of distorted folates metabolism genetic markers with progression of clinically manifesting chronic heart failure with preserved ejection fraction (CHF-pEF) in patients with arterial hypertension (HTN) and type 2 diabetes mellitus (DM2).
Objective. To identify folate cycle genes polymorphisms in patients with HTN, DM2 and CHF-pEF.
Design and methods. We have identified the occurrence frequency of several MTHFR genes polymorphisms: 677 C > T (rs1801133), MTHFR: 1298 A > C (rs1801131), MTR: 2756 A > G (rs1805087), MTRR: 66 A > G (rs1801394) in patients with CHF-pEF and DM2 (n = 52), chronic heart failure with reduced ejection fraction (CHF-rEF) and DM2 (n = 49) and control patients without CHF or DM2 (n = 66). Mean aged was 69,9 ± 10,1 years old.
Results. In comparison to the controls, the CHF-pEF group showed higher frequencies of rs1801133: CHF-pEF group — 61,54 % vs. 28,57 % (odds ratio (OR) — 4,0, confidence interval (CI) — 1,788–8,948, p < 0,002); rs1805087–75,0 % vs. 25,0 % (OR — 9,0, CI — 3,573–22,673, p < 0,001), rs1801394–90,38 % vs. 69,39 % (OR — 4,2, CI — 1,375–12,510, p < 0,017). Compared to the CHF-rFV group, the following frequencies were found: CHF-rFV — rs1805087–75,0 % against 36,96 % (OR — 5,2, CI — 2,110–12,414, p < 0,001), rs1801394–90,38 % vs. 68,75 % (OR — 4,3, CI — 1,414–12,909, p < 0,011). The polymorphism frequencies in CHF-rFV were generally comparable with such of the controls. Conclusions. Higher frequencies of rs1801133, rs1805087 and rs1801394 polymorphisms were detected in patients with HTN, DM2 and those with CHF-pEF, as compared to either helthy patients and those with reduced ejection fraction. There is also high rate of rs1801394 polymorphism in patients with HTN, DM2, regardless of the ejection fraction.

About the Authors

T. S. Sveklina
Military Medical Academy named after S. M. Kirov
Russian Federation

Tatiana S. Sveklina, MD, PhD, Associate Professor, Internal Diseases Propadeutics Department

63a Suvorovsky av., St Petersburg, 1



S. N. Kolyubaeva
Military Medical Academy named after S. M. Kirov
Russian Federation

Svetlana N. Kolyubaeva, Doctor of Biological Sciences, Senior Fellow

63a Suvorovsky av., St Petersburg, 1



S. B. Shustov
Military Medical Academy named after S. M. Kirov
Russian Federation

Sergey B. Shustov, MD, PhD, DSc, Professor, the 1st Department of Therapy (advanced medical training)

63a Suvorovsky av., St Petersburg, 1



A. N. Kuchmin
Military Medical Academy named after S. M. Kirov
Russian Federation

Alexey N. Kuchmin, MD, PhD, DSc, Head and Professor, Department of Propedeutics of Internal Diseases

63a Suvorovsky av., St Petersburg, 1



V. A. Kozlov
Chuvash State University
Russian Federation

Vadim A. Kozlov, Doctor of Biological Sciences, Candidate of Medical Sciences, Professor, Department of Medical Biology with Course of Microbiology and Virology

Cheboksary



M. Y. Yaroslavtsev
Military Medical Academy named after S. M. Kirov
Russian Federation

Mikhail Y. Yaroslavtsev, MD, PhD, Professor Department of Propedeutics of Internal Diseases

63a Suvorovsky av., St Petersburg, 1



V. V. Konyaev
Military Medical Academy named after S. M. Kirov
Russian Federation

Vladislav V. Konyaev, the 5th Year Student

63a Suvorovsky av., St Petersburg, 1



P. D. Oktysyuk
Military Medical Academy named after S. M. Kirov
Russian Federation

Polina D. Oktysyuk, the 5th Year Student

63a Suvorovsky av., St Petersburg, 1



References

1. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355(3): 251–259. doi:10.1056/nejmoa052256

2. Meagher P, Adam M, Civitarese R, Bugyei-Twum A, Connelly KA. Heart failure with preserved ejection fraction in diabetes: mechanisms and management. Can J Cardiol. 2018;34(5):632–643. doi:10.1016/j.cjca.2018.02.026

3. Raghubeer S, Matsha TE. Methylenetetrahydrofolate (MTHFR), the one-carbon cycle, and cardiovascular risks. Nutrients. 2021;13(12):4562. doi:10.3390/nu13124562

4. Lai WK, Kan MY. Homocysteine-induced endothelial dysfunction. Ann Nutr Metab. 2015;67(1):1–12. doi:10.1159/000437098

5. Kubisz P, Stančiaková L, Staško J, Galajda P, Mokáň M. Endothelial and platelet markers in diabetes mellitus type 2. World J Diabetes. 2015;6(3):423–431. doi:10.4239/wjd.v6.i3.423

6. Ubbink JB, Vermaak WJ, Bennett JM, Becker PJ, van Staden DA, Bissbort S. The prevalence of homocysteinemia and hypercholesterolemia in angiographically defined coronary heart disease. Klin Wochenschr. 1991;69(12):527–534. doi:10.1007/BF01649290

7. Mello AL, Cunha SF, Foss-Freitas MC, Vannucchi H. Evaluation of plasma homocysteine level according to the C 677T and A1298C polymorphism of the enzyme MTHRF in type 2 diabetic adults. Arq Bras Endocrinol Metabol. 2012;56(7):429–434. doi:10.1590/s0004-27302012000700004

8. Ašić A, Salazar R, Storm N, Doğan S, Höppner W, Marjanović D et al. Population study of thrombophilic markers and pharmacogenetic markers of warfarin prevalence in Bosnia and Herzegovina. Croat Med J. 2019;60(3):212–220. doi:10.3325/cmj.2019.60.212

9. Sarkar P, Chatterjee D, Bandyopadhyay AR. Effect of MTHFR (rs1801133) and FTO (rs9939609) genetic polymorphisms and obesity in T2DM: a study among Bengalee Hindu caste population of West Bengal, India. Ann Hum Biol. 2021;48(1):62–65. doi:10.1080/03014460.2021.1876920

10. Karmadonova NA, Shilova AN, Kozyreva VS, Subbotovskaya AI, Klevanets JE, Karpenko AA. Association of folate metabolism gene polymorphisms and pulmonary embolism: a case-control study of West-Siberian population. Thromb Res. 2015;135(5):788–795. doi:10.1016/j.thromres.2014.11.021

11. Luo Z, Lu Z, Muhammad I, Chen Y, Chen Q, Zhang J et al. Associations of the MTHFR rs1801133 polymorphism with coronary artery disease and lipid levels: a systematic review and updated metaanalysis. Lipids Health Dis. 2018;17(1):191. doi:10.1186/s12944-018-0837-y

12. Visram M, Radulovic M, Steiner S, Malanovic N, Eichmann TO, Wolinski H et al. Homocysteine regulates fatty acid and lipid metabolism in yeast. J Biol Chem. 2018;293(15):5544–5555. doi:10.1074/jbc.M117.809236

13. Vijayakumar A, Kim EK, Kim H, Choi YJ, Huh KB, Chang N. Effects of folic acid supplementation on serum homocysteine levels, lipid profiles, and vascular parameters in post-menopausal Korean women with type 2 diabetes mellitus. Nutr Res Pract. 2017;11(4):327–333. doi:10.4162/nrp.2017.11.4.327

14. Baszczuk A, Thielemann A, Musialik K, Kopczynski J, Bielawska L, Dzumak A et al. The impact of supplementation with folic acid on homocysteine concentration and selected lipoprotein parameters in patients with primary hypertension. J Nutr Sci Vitaminol (Tokyo). 2017;63(2):96–103. doi:10.3177/jnsv.63.96

15. Llanos AA, Marian C, Brasky TM, Dumitrescu RG, Liu Z, Mason JB et al. Associations between genetic variation in one-carbon metabolism and LINE‑1 DNA methylation in histologically normal breast tissues. Epigenetics. 2015;10(8):727–735. doi:10.1080/15592294.2015.1062205

16. Fan Y, Wu L, Zhuang W. Methylenetetrahydrofolate Reductase Gene rs1801133 and rs1801131 Polymorphisms and Essential Hypertension Risk: A Comprehensive Analysis. Cardiovasc Ther. 2022;2022:2144443. doi:10.1155/2022/2144443

17. Binia A, Contreras AV, Canizales-Quinteros S, Alonzo VA, Tejero ME, Silva-Zolezzi I. Geographical and ethnic distribution of single nucleotide polymorphisms within genes of the folate/homocysteine pathway metabolism. Genes Nutr. 2014;9(5):421. doi:10.1007/s12263-014-0421-7

18. Aksoy-Sagirli P, Erdenay A, Kaytan-Saglam E, Kizir A. Association of three single nucleotide polymorphisms in MTR and MTRR genes with lung cancer in a Turkish Population. Genet Test Mol Biomarkers. 2017;21(7):428–432. doi:10.1089/gtmb.2017.0062

19. Zhong JH, Rodríguez AC, Yang NN, Li LQ. Methylenetetrahydrofolate reductase gene polymorphism and risk of type 2 diabetes mellitus. PLoS One. 2013;8(9):e74521. doi:10.1371/journal.pone.0074521

20. Meng Y, Liu X, Ma K, Zhang L, Lu M, Zhao M et al. Association of MTHFR C 677T polymorphism and type 2 diabetes mellitus (T2DM) susceptibility. Mol Genet Genomic Med. 2019;7(12): e1020. doi:10.1002/mgg3.1020

21. Koziolova NA, Chernyavina AI. The relationship of gene polymorphism with the heart failure risk in patients with hypertension and high adherence to treatment. Russian Journal of Cardiology. 2020;25(3):3708. doi:10.15829/1560-4071-2020-3-3708. In Russian.


Review

For citations:


Sveklina T.S., Kolyubaeva S.N., Shustov S.B., Kuchmin A.N., Kozlov V.A., Yaroslavtsev M.Y., Konyaev V.V., Oktysyuk P.D. Relationship between folate cycle genes polymorphisms and development of chronic heart failure in patients with hypertension and type 2 diabetes mellitus. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2023;29(3):299-305. (In Russ.) https://doi.org/10.18705/1607-419X-2023-29-3-299-305

Views: 691


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)