Ангиотензинпревращающий фермент: хорошо знакомый незнакомец. Часть I
https://doi.org/10.18705/1607-419X-2023-29-4-353-370
Аннотация
Ангиотензинпревращающий фермент (АПФ) был открыт в 1956 году и активно изучается до настоящего времени. Он обладает уникальной структурой в виде двух гомологичных доменов, каждый из которых содержит каталитический ион цинка, но обладающих различной субстратной специфичностью. С точки зрения функции АПФ представляет собой металлопептидазу цинка, широко представленную на поверхности эндотелиальных и эпителиальных клеток. Ген, кодирующий АПФ, расположен на длинном плече хромосомы 17 (17q23) и имеет длину в 21000 оснований (т. п. н.), включая 26 экзонов и 25 интронов. Структура АПФ может быть результатом дупликации древнего гена, произошедшей приблизительно 700 миллионов лет назад. Основная функция АПФ — превращение ангиотензина I в сосудосуживающий ангиотензин II, который является основным активным продуктом. Кроме того, АПФ метаболизирует брадикинин, который является сильным сосудорасширяющим средством. АПФ участвует в метаболизме других ангиотензинов, в частности — ангиотензина (1–7), образуя совместно с АПФ2 и другими компонентами ренин-ангиотензин-альдостероновой системы (РААС) сложную сбалансированную систему поддержания артериального давления, водно-электролитного баланса и многих других, еще до конца не изученных компонентов системного, тканевого и клеточного гомеостаза. Все больше накапливается данных о необходимости присутствия АПФ для полноценного развития почек, процессов раннего кроветворения, нормальной мужской фертильности, эритропоэза, миелопоэза. Многочисленными оказались функции АПФ при иммунном ответе, внутриклеточной передаче сигналов.
Об авторе
Е. О. НалесникРоссия
Налесник Елена Олеговна — научный сотрудник НИИ кардиологии Томского НИМЦ.
ул. Киевская, д. 111а, Томск, 634012
Тел.: 8 (3822) 55-83-67
Список литературы
1. Unger T, Steckelings UM, dos Santos RS. The protective arm of the renin angiotensin: functional aspects and therapeutic implications. Elsevier: Amsterdam, Netherlands; 2015. ISBN 978– 0–12–801485–1. Available from: doi:10.1016/C2013-0-23135-4
2. Mogi M. Effect of renin-angiotensin system on senescence. Geriatr Gerontol Int. 2020;20(6):520–525. doi: 10.1111/ggi.13927
3. Satou R, Penrose H, Navar LG. Inflammation as a regulator of the renin-angiotensin system and blood pressure. Curr Hypertens Rep. 2018;20(12):100. doi:10.1007/s11906-018-0900-0
4. De Mello WC, Frohlich ED. Clinical perspectives and fundamental aspects of local cardiovascular and renal renin-angiotensin systems. Front Endocrinol (Lausanne). 2014;5:16. doi:10.3389/fendo.2014.00016
5. Inagami T. Biochemical regulation of blood pressure. John Wiley and Sons, New York. 1981;39–73.
6. Kurtz A. Renin release: sites, mechanisms, and control. Annu Rev Physiol. 2011;73:377–399. doi:10.1146/annurev-physiol-012110-142238
7. Bernstein KE, Ong FS, Blackwell WL, Shah KH, Giani JF, Gonzalez-Villalobos RA et al. A modern understanding of the traditional and nontradition al biological functions of angiotensin-converting enzyme. Pharmacol Rev. 2013;65(1):1–46. doi:10.1124/pr.112.006809
8. De Mello WC. Chemical Communication between heart cells is disrupted by intracellular renin and angiotensin II: implications for heart development and disease. Front Endocrinol (Lausanne). 2015;6:72. doi: 10.3389/fendo.2015.00072
9. Beuschlein F. Regulation of aldosterone secretion: from physiology to disease. Eur J Endocrinol. 2013;168(6):R 85-R 93. doi:10.1530/EJE-13-0263
10. Jaisser F, Farman N. Emerging roles of the mineralocorticoid receptor in pathology: toward new paradigms in clinical pharmacology. Pharmacol Rev. 2016;68(1):49–75. doi:10.1124/pr.115.011106
11. Marzolla V, Armani A, Feraco A, De Martino MU, Fabbri A, Rosano G et al. Mineralocorticoid receptor in adipocytes and macrophages: a promising target to fight metabolic syndrome. Steroids. 2014;91:46–53. doi: 10.1016/j.steroids.2014.05.001
12. Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev. 2006;86(3):747–803. doi:10.1152/physrev.00036.2005
13. Corvol P, Eyries M, Soubrier F. Peptidyl-dipeptidase A/Angiotensin I converting enzyme, in Handbook of Proteolytic Enzymes (Barret A, Rawlings N, Woessner J). Elsevier Academic Press, New York. 2004;332–349.
14. Bernstein KE, Martin BM, Edwards AS, Bernstein EA. Mouse angiotensin-converting enzyme is a protein composed of two homologous domains. J Biol Chem. 1989;264(20):11945–11951.
15. Soubrier F, Alhenc-Gelas F, Hubert C, Allegrini J, John M, Tregear G et al. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci USA. 1988;85(24):9386–9390. doi:10.1073/pnas.85.24.9386
16. Spyroulias GA, Galanis AS, Pairas G, Manessi-Zoupa E, Cordopatis P. Structural features of angiotensin-I converting enzyme catalytic sites: conformational studies in solution, homology models and comparison with other zinc metallopeptidases. Curr Top Med Chem. 2004;4(4):403–429. doi:10.2174/1568026043451294
17. Fuchs S, Xiao HD, Hubert C, Michaud A, Campbell DJ, Adams JW et al. Angiotensin-converting enzyme C-terminal catalytic domain is the main site of angiotensin I cleavage in vivo. Hypertension. 2008;51(2):267–274. doi:10.1161/HYPERTENSIONAHA.107.097865
18. Danilov SM, Gordon K, Nesterovitch AB, Lünsdorf H, Chen Z, Castellon M et al. An angiotensin I-converting enzyme mutation (Y 465D) causes a dramatic increase in blood ACE via accelerated ACE shedding. PLoS One. 2011;6(10):e25952. doi:10.1371/journal.pone.0025952
19. Acharya KR, Sturrock ED, Riordan JF, Ehlers MR. Ace revisited: a new target for structure-based drug design. Nat Rev Drug Discov. 2003;2(11):891–902. doi:10.1038/nrd1227
20. Corradi HR, Schwager SL, Nchinda AT, Sturrock ED, Acharya KR. Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design. J Mol Biol. 2006;357(3):964–974. doi:10.1016/j.jmb.2006.01.048
21. Bernstein KE, Welsh SL, Inman JK. A deeply recessed active site in angiotensin-converting enzyme is indicated from the binding characteristics of biotin-spacer-inhibitor reagents. Biochem Biophys Res Commun. 1990;167(1):310–316. doi:10.1016/0006-291x(90)91766-l
22. Woodman ZL, Schwager SL, Redelinghuys P, Chubb AJ, van der Merwe EL, Ehlers MR et al. Homologous substitution of ACE C-domain regions with N-domain sequences: effect on processing, shedding, and catalytic properties. Biol Chem. 2006;387(8):1043–1051. doi:10.1515/BC.2006.129
23. Hooper NM, Turner AJ. Isolation of two differentially glycosylated forms of peptidyl-dipeptidase A (angiotensin converting enzyme) from pig brain: a re-evaluation of their role in neuropeptide metabolism. Biochem J. 1987;241(3):625–633. doi:10.1042/bj2410625
24. Hooper NM. Angiotensin converting enzyme: implications from molecular biology for its physiological functions. Int J Biochem. 1991;23(7–8):641–647. doi:10.1016/0020-711x(91)90032-i
25. Das M, Hartley JL, Soffers RL. Serum angiotensin-converting enzyme. Isolation and relationship to the pulmonary enzyme. J Biol Chem. 1977;252(4):1316–1319.
26. Dux S, Aron N, Boner G, Carmel A, Yaron A, Rosen-feld JB. Serum angiotensin converting enzyme activity in normal adults and patients with different types of hypertension. Isr J Med Sci. 1984;20(12):1138–1142.
27. Tiret L, Rigat B, Visvikis S, Breda C, Corvol P, Cambien F et al. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet. 1992;51(1):197–205.
28. Bénéteau-Burnat B, Baudin B, Morgant G, Baumann FC, Giboudeau J. Serum angiotensin-converting enzyme in healthy and sarcoidotic children: comparison with the reference interval for adults. Clin Chem. 1990;36(2):344–346.
29. Skidgel RA, Erdös EG. Biochemistry of angiotensin converting enzyme, in the renin-angiotensin system. (Robertson JIS, Nicholls MG). Gower Medical Publishers, London. 1993;10(1):10.
30. Shen XZ, Billet S, Lin C, Okwan-Duodu D, Chen X, Lukacher AE et al. The carboxypeptidase ACE shapes the MHC class I peptide repertoire. Nat Immunol. 2011;12(11):1078–1085. doi:10.1038/ni.2107
31. Strittmatter SM, Lo MM, Javitch JA, Snyder SH. Autoradiographic visualization of angiotensin-converting enzyme in rat brain with [3H] captopril: localization to a striatonigral pathway. Proc Natl Acad Sci USA. 1984;81(5):1599–1603. doi:10.1073/pnas.81.5.1599
32. Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532(1–2):107– 110. doi: 10.1016/s0014-5793(02)03640-2
33. Krulewitz AH, Baur WE, Fanburg BL. Hormonal influence on endothelial cell angiotensin-converting enzyme activity. Am J Physiol. 1984;247(3 Pt 1): C 163-C 168. doi: 10.1152/ajpcell.1984.247.3.C163
34. Krulewitz AH, Fanburg BL. Stimulation of bovine endothelial cell angiotensin-I-converting enzyme activity by cyclic AMP-related agents. J Cell Physiol. 1986;129(2):147–150. doi:10.1002/jcp.1041290204
35. Nakamura Y, Takeda T, Ishii M, Nishiyama K, Yamakada M, Hirata Y et al. Elevation of serum angiotensin-converting enzyme activity in patients with hyperthyroidism. J Clin Endocrinol Metab. 1982;55(5):931–934. doi:10.1210/jcem-55-5-931
36. Krege JH, Kim HS, Moyer JS, Jennette JC, Peng L, Hiller SK et al. Angiotensin-converting enzyme gene mutations, blood pressures, and cardiovascular homeostasis. Hypertension. 1997;29(1Pt2):150–157. doi:10.1161/01.hyp.29.1.150
37. Smithies O, Kim HS, Takahashi N, Edgell MH. Importance of quantitative genetic variations in the etiology of hypertension. Kidney Int. 2000;58(6):2265–2280. doi:10.1046/j.1523-1755.2000.00411.x
38. Hubert C, Houot AM, Corvol P, Soubrier F. Structure of the angiotensin I-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene. J Biol Chem. 1991;266(23):15377–15383.
39. Rivière G. L’enzyme de conversion de l’angiotensine: une protéase conservée au cours de l’évolution. J Soc Biol. 2009;203(4):281–293 [Angiotensin-converting enzyme: a protein conserved during evolution. J Soc Biol. 2009;203(4):281–293. In French]. doi:10.1051/jbio/2009032
40. Peterson KJ, Cotton JA, Gehling JG, Pisani D. The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philos Trans R Soc Lond B Biol Sci. 2008;363(1496):1435–1443. doi:10.1098/rstb.2007.2233
41. Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science. 2000;290(5494):1151– 1155. doi:10.1126/science.290.5494.1151
42. Hurles M. Gene duplication: the genomic trade in spare parts. PLoS Biol. 2004;2(7): E 206. doi:10.1371/journal.pbio.0020206
43. Pennisi E. Evolutionary biology. Twinned genes live life in the fast lane. Science. 2000;290(5494):1065–1066. doi:10.1126/science.290.5494.1065a
44. Yoshioka M, Erickson RH, Woodley JF, Gulli R, Guan D, Kim YS. Role of rat intestinal brush-border membrane angiotensin-converting enzyme in dietary protein digestion. Am J Physiol. 1987;253(6Pt1):G781-G786. doi:10.1152/ajpgi.1987.253.6.G781
45. Rivière G, MichaudA, Deloffre L, Vandenbulcke F, LevoyeA, Breton C et al. Characterization of the first non-insect invertebrate functional angiotensin-converting enzyme (ACE): leech TtACE resembles the N-domain of mammalian ACE. Biochem J. 2004; 382(Pt2):565–73. doi:10.1042/BJ20040522
46. O’Neill HG, Redelinghuys P, Schwager SL, Sturrock ED. The role of glycosylation and domain interactions in the thermal stability of human angiotensin-converting enzyme. Biol Chem. 2008;389(9):1153–1161. doi:10.1515/BC.2008.131
47. Wei L, Clauser E, Alhenc-Gelas F, Corvol P. The two homologous domains of human angiotensin I-converting enzyme interact differently with competitive inhibitors. J Biol Chem. 1992;267(19):13398–13405.
48. Skidgel RA, Erdös EG. The broad substrate specificity of human angiotensin I converting enzyme. Clin Exp Hypertens A. 1987;9(2–3):243–259. doi:10.3109/10641968709164184
49. Erdös EG, Skidgel RA. The angiotensin I-converting enzyme. Lab Invest. 1987;56(4):345–348.
50. Wei L, Alhenc-Gelas F, Corvol P, Clauser E. The two homologous domains of human angiotensin I-converting enzyme are both catalytically active. J Biol Chem. 1991;266(14):9002–9008. PMID:1851160
51. Leeb-Lundberg LM, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev. 2005;57(1):27–77. doi:10.1124/pr.57.1.2
52. Moreau ME, Garbacki N, Molinaro G, Brown NJ, Marceau F, Adam A. The kallikrein-kinin system: current and future pharmacological targets. J Pharmacol Sci. 2005;99(1):6–38. doi:10.1254/jphs.srj05001x
53. Duncan AM, Kladis A, Jennings GL, Dart AM, Esler M, Campbell DJ. Kinins in humans. Am J Physiol Regul Integr Comp Physiol. 2000;278(4):R 897-R 904. doi:10.1152/ajpregu.2000.278.4.R897
54. Maurer M, Bader M, Bas M, Bossi F, Cicardi M, Cugno M et al. New topics in bradykinin research. Allergy. 2011;66(11):1397– 1406. doi:10.1111/j.1398-9995.2011.02686.x
55. Sharma JN. Hypertension and the bradykinin system. Curr Hypertens Rep. 2009;11(3):178–181. doi:10.1007/s11906-009-0032-7
56. Campbell DJ, Alexiou T, Xiao HD, Fuchs S, McKinley MJ, Corvol P et al. Effect of reduced angiotensin-converting enzyme gene expression and angiotensin-converting enzyme inhibition on angiotensin and bradykinin peptide levels in mice. Hypertension. 2004;43(4):854–859. doi:10.1161/01.HYP.0000119190.06968.f1
57. Jaspard E, Wei L, Alhenc-Gelas F. Differences in the properties and enzymatic specificities of the two active sites of angiotensin I-converting enzyme (kininase II). Studies with bradykinin and other natural peptides. J Biol Chem. 1993;268(13): 9496–9503.
58. Taddei S, Bortolotto L. Unraveling the pivotal role of bradykinin in ACE inhibitor activity. Am J Cardiovasc Drugs. 2016;16(5):309–321. doi:10.1007/s40256-016-0173-4
59. Tom B, Dendorfer A, Danser AH. Bradykinin, angiotensin-(1–7), and ACE inhibitors: how do they interact? Int J Biochem Cell Biol. 2003;35(6):792–801. doi:10.1016/s1357-2725(02)00273-x
60. Mellick GD, Buchanan DD, McCann SJ, Davis DR, Le Couteur DG, Chan D et al. The ACE deletion polymorphism is not associated with Parkinson’s disease. Eur Neurol. 1999;41(2):103–106. doi:10.1159/000008012
61. Baghai TC, Schule C, Zill P, Deiml T, Eser D, Zwanzger P et al. The angiotensin I converting enzyme insertion/deletion polymorphism influences therapeutic outcome in major depressed women, but not in men. Neurosci Lett. 2004;363:38–42. doi:10.1016/j.neulet.2004.03.052
62. Arinami T, Li L, Mitsushio H, Itokawa M, Hamaguchi H, Toru M. An insertion/deletion polymorphism in the angiotensin converting enzyme gene is associated with both brain substance P contents and affective disorders. Biol Psychiatry. 1996;40(11):1122– 1127. doi:10.1016/s0006-3223(95)00597-8
63. Ferrario CM, Chappell MC, Tallant EA, Brosnihan KB, Diz DI. Counterregulatory actions of angiotensin-(1–7). Hypertension. 1997;30(3Pt2):535–541. doi:10.1161/01.hyp.30.3.535
64. Turner AJ. Exploring the structure and function of zinc metallopeptidases: old enzymes and new discoveries. Biochem Soc Trans. 2003;31(Pt3):723–727. doi:10.1042/bst0310723
65. Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE 2 and neprilysin in angiotensin peptide metabolism. Biochem J. 2004;383(Pt1):45–51. doi:10.1042/BJ20040634
66. Chappell MC, Pirro NT, Sykes A, Ferrario CM. Metabolism of angiotensin-(1–7) by angiotensin-converting enzyme. Hypertension. 1998;31(1Pt2):362–367. doi:10.1161/01.hyp.31.1.362
67. Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277(17):14838–14843. doi:10.1074/jbc.M200581200
68. Marquez A, Batlle D. Angiotensin-(1–7) for diabetic kidney disease: better than an angiotensin-converting enzyme inhibitor alone? Kidney Int. 2019;96(4):815–817. doi:10.1016/j.kint.2019.05.028
69. Ferrario CM, Averill DB, Brosnihan KB, Chappell MC, Iskandar SS, Dean RH et al. Vasopeptidase inhibition and Ang(1–7) in the spontaneously hypertensive rat. Kidney Int. 2002;62(4):1349– 1357. doi: 10.1111/j.1523-1755.2002.kid559.x
70. Zimmerman D, Burns KD. Angiotensin-(1–7) in kidney disease: a review of the controversies. Clin Sci (Lond). 2012;123(6):333–346. doi:10.1042/CS20120111
71. Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I et al. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA. 2003;100(14):8258–8263. doi:10.1073/pnas.1432869100
72. Gaidarov I, Adams J, Frazer J, Anthony T, Chen X, Gatlin J et al. Angiotensin-(1–7) does not interact directly with MAS 1, but can potently antagonize signaling from the AT1 receptor. Cell Signal. 2018;50:9–24. doi:10.1016/j.cellsig.2018.06.007
73. Zou K, Maeda T, Watanabe A, Liu J, Liu S, Oba R et al. Abeta42-to-Abeta40-and angiotensin-converting activities in different domains of angiotensin-converting enzyme. J Biol Chem. 2009;284(46):31914–31920. doi:10.1074/jbc.M109.011437
74. Oba R, Igarashi A, Kamata M, Nagata K, Takano S, Nakagawa H. The N-terminal active centre of human angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide. Eur J Neurosci. 2005;21(3):733–740. doi: 10.1111/j.1460-9568.2005.03912.x
75. Sun X, Becker M, Pankow K, Krause E, Ringling M, Beyermann M et al. Catabolic attacks of membrane-bound angiotensin-converting enzyme on the N-terminal part of species-specific amyloid-beta peptides. Eur J Pharmacol. 2008;588(1):18– 25. doi:10.1016/j.ejphar.2008.03.058
76. Hemming ML, Selkoe DJ. Amyloid beta-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J Biol Chem. 2005;280(45):37644– 37650. doi:10.1074/jbc.M508460200
77. Rousseau A, Michaud A, Chauvet MT, Lenfant M, Corvol P. The hemoregulatory peptide N-acetyl-Ser-Asp-Lys-Pro is a natural and specific substrate of the N-terminal active site of human angiotensin-converting enzyme. J Biol Chem. 1995;270(8):3656– 3661. doi:10.1074/jbc.270.8.3656
78. Myöhänen TT, Tenorio-Laranga J, Jokinen B, Vázquez-Sánchez R, Moreno-Baylach MJ, García-Horsman JA et al. Prolyl oligopeptidase induces angiogenesis both in vitro and in vivo in a novel regulatory manner. Br J Pharmacol. 2011;163(8):1666–1678. doi: 10.1111/j.1476-5381.2010.01146.x
79. Liao TD, Yang XP, D’Ambrosio M, Zhang Y, Rhaleb NE, Carretero OA. N-acetyl-seryl-aspartyl-lysyl-proline attenuates renal injury and dysfunction in hypertensive rats with reduced renal mass: council for high blood pressure research. Hypertension. 2010;55(2):459–467. doi:10.1161/HYPERTENSIONAHA.109.144568
80. Kumar N, Yin C. The anti-inflammatory peptide Ac-SDKP: Synthesis, role in ACE inhibition, and its therapeutic potential in hypertension and cardiovascular diseases. Pharmacol Res. 2018;134:268–279. doi:10.1016/j.phrs.2018.07.006
81. Arendshorst WJ, Brännström K, Ruan X. Actions of angiotensin II on the renal microvasculature. J Am Soc Nephrol. 1999;10(Suppl11):S 149-S 161. PMID:9892156
82. Wang T, Giebisch G. Effects of angiotensin II on electrolyte transport in the early and late distal tubule in rat kidney. Am J Physiol. 1996;271(1Pt2):F143-R 149. doi:10.1152/ajprenal.1996.271.1.F143
83. Herrera M, Silva GB, Garvin JL. Angiotensin II stimulates thick ascending limb superoxide production via protein kinase C(α)-dependent NADPH oxidase activation. J Biol Chem. 2010;285(28):21323–21328. doi:10.1074/jbc.M110.109157
84. Rüster C, Wolf G. Angiotensin II as a morphogenic cytokine stimulating renal fibrogenesis. J Am Soc Nephrol. 2011;22(7):1189–1199. doi:10.1681/ASN.2010040384
85. Sachse A, Wolf G. Angiotensin II-induced reactive oxygen species and the kidney. J Am Soc Nephrol. 2007;18(9):2439–2446. doi:10.1681/ASN.2007020149
86. Guilluy C, Brégeon J, Toumaniantz G, Rolli-Derkinderen M, Retailleau K, Loufrani L et al. The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure. Nat Med. 2010;16(2):183–190. doi:10.1038/nm.2079
87. Savoia C, Burger D, Nishigaki N, Montezano A, Touyz RM. Angiotensin II and the vascular phenotype in hypertension. Expert Rev Mol Med. 2011;13:e11. doi:10.1017/S1462399411001815
88. Koch-Weser J. Nature of the inotropic action of angiotensin on ventricular myocardium. Circ Res. 1965;16:230–237. doi:10.1161/01.res.16.3.230
89. Dempsey PJ, McCallum ZT, Kent KM, Cooper T. Direct myocardial effects of angiotensin II. Am J Physiol. 1971;220(2):477– 481. doi:10.1152/ajplegacy.1971.220.2.477
90. Dostal DE, Baker KM. Angiotensin and endothelin: messengers that couple ventricular stretch to the Na+/H+ exchanger and cardiac hypertrophy. Circ Res. 1998;83(8):870–873. doi:10.1161/01.res.83.8.870
91. Xiao HD, Fuchs S, Bernstein EA, Li P, Campbell DJ, Bernstein KE. Mice expressing ACE only in the heart show that increased cardiac angiotensin II is not associated with cardiac hypertrophy. Am J Physiol Heart Circ Physiol. 2008;294(2): H659-H667. doi:10.1152/ajpheart.01147.2007
92. Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci USA. 2006;103(47):17985–17990. doi:10.1073/pnas.0605545103
93. Tan LB, Jalil JE, Pick R, Janicki JS, Weber KT. Cardiac myocyte necrosis induced by angiotensin II. Circ Res. 1991;69(5): 1185–1195. doi:10.1161/01.res.69.5.1185
94. Cigola E, Kajstura J, Li B, Meggs LG, Anversa P. Angiotensin II activates programmed myocyte cell death in vitro. Exp Cell Res. 1997;231(2):363–371. doi:10.1006/excr.1997.3477
95. Doughan AK, Harrison DG, Dikalov SI. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res. 2008;102(4):488–496. doi:10.1161/CIRCRESAHA.107.162800
96. Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev. 2006;86(3):747–803. doi:10.1152/physrev.00036.2005
97. Xia H, Feng Y, Obr TD, Hickman PJ, Lazartigues E. Angiotensin II type 1 receptor-mediated reduction of angiotensin-converting enzyme 2 activity in the brain impairs baroreflex function in hypertensive mice. Hypertension. 2009;53(2):210–216. doi:10.1161/HYPERTENSIONAHA.108.123844
98. Qadri F, Culman J, Veltmar A, Maas K, Rascher W, Unger T. Angiotensin II-induced vasopressin release is mediated through alpha-1 adrenoceptors and angiotensin II AT1 receptors in the supraoptic nucleus. J Pharmacol Exp Ther. 1993;267(2):567–574. PMID:8246129
99. Grobe JL, Grobe CL, Beltz TG, Westphal SG, Morgan DA, Xu D et al. The brain Renin-angiotensin system controls divergent efferent mechanisms to regulate fluid and energy balance. Cell Metab. 2010;12(5):431–442. doi:10.1016/j.cmet.2010.09.011
100. Osborn JL, Camara AK. Renal neurogenic mediation of intracerebroventricular angiotensin II hypertension in rats raised on high sodium chloride diet. Hypertension. 1997;30(3Pt1):331–336. doi:10.1161/01.hyp.30.3.331
101. Yamamoto R, Akazawa H, Fujihara H, Ozasa Y, Yasuda N, Ito K et al. Angiotensin II type 1 receptor signaling regulates feeding behavior through anorexigenic corticotropin-releasing hormone in hypothalamus. J Biol Chem. 2011;286(24):21458–21465. doi:10.1074/jbc.M110.192260
102. Díaz-Torga G, González Iglesias A, Achával-Zaia R, Libertun C, Becú-Villalobos D. Angiotensin II-induced Ca2+ mobilization and prolactin release in normal and hyperplastic pituitary cells. Am J Physiol. 1998;274(3):E 534-E 540. doi:10.1152/ajpendo
103. Osborn JW, Fink GD, Kuroki MT. Neural mechanisms of angiotensin II-salt hypertension: implications for therapies targeting neural control of the splanchnic circulation. Curr Hypertens Rep. 2011;13(3):221–228. doi:10.1007/s11906-011-0188-9
104. Potter EK. Angiotensin inhibits action of vagus nerve at the heart. Br J Pharmacol. 1982;75(1):9–11. doi:10.1111/j.1476-5381.1982.tb08752.x
105. de Kloet AD, Krause EG, Scott KA, Foster MT, Herman JP, Sakai RR et al. Central angiotensin II has catabolic action at white and brown adipose tissue. Am J Physiol Endocrinol Metab. 2011;301(6):E 1081-E 1091. doi:10.1152/ajpendo.00307.2011
106. Garg M, Angus PW, Burrell LM, Herath C, Gibson PR, Lubel JS. Review article: the pathophysiological roles of the renin-angiotensin system in the gastrointestinal tract. Aliment Pharmacol Ther. 2012;35(4):414–428. doi:10.1111/j.1365-2036.2011.04971.x
107. de los Rios AD, Labajos M, Manteca A, Morell M, Souviron A. Stimulatory action of angiotensin II on water and electrolyte transport by the proximal colon of the rat. J Endocrinol. 1980;86(1):35–43. doi:10.1677/joe.0.0860035
108. Senchenkova EY, Russell J, Almeida-Paula LD, Harding JW, Granger DN. Angiotensin II-mediated microvascular thrombosis. Hypertension. 2010;56(6):1089–1095. doi:10.1161/HYPERTENSIONAHA.110.158220
109. Farmer JA. Renin angiotensin system and ASCVD. Curr Opin Cardiol. 2000;15(3):141–150. doi:10.1097/00001573-200005000-00004
110. Larsson PT, Schwieler JH, Wallén NH. Platelet activation during angiotensin II infusion in healthy volunteers. Blood Coagul Fibrinolysis. 2000;11(1):61–69. PMID:10691100
111. Gebhard S, Steil L, Peters B, Gesell-Salazar M, Hammer E, Kuttler B et al. Angiotensin II-dependent hypertension causes reversible changes in the platelet proteome. J Hypertens. 2011; 29(11):2126–2137. doi:10.1097/HJH.0b013e32834b1991
112. Vaughan DE, Lazos SA, Tong K. Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin-angiotensin system and thrombosis. J Clin Invest. 1995;95(3):995–1001. doi:10.1172/JCI117809
113. Nishimura H, Tsuji H, Masuda H, Nakagawa K, Nakahara Y, Kitamura H et al. Angiotensin II increases plasminogen activator inhibitor-1 and tissue factor mRNA expression without changing that of tissue type plasminogen activator or tissue factor pathway inhibitor in cultured rat aortic endothelial cells. Thromb Haemost. 1997;77(6):1189–1195. PMID:9241756
114. Senchenkova EY, Russell J, Kurmaeva E, Ostanin D, Granger DN. Role of T lymphocytes in angiotensin II-mediated microvascular thrombosis. Hypertension. 2011;58(5):959–965. doi:10.1161/HYPERTENSIONAHA.111.173856
115. Klett C, Nobiling R, Gierschik P, Hackenthal E. Angiotensin II stimulates the synthesis of angiotensinogen in hepatocytes by inhibiting adenylylcyclase activity and stabilizing angiotensinogen mRNA. J Biol Chem. 1993;268(33):25095–25107. PMID:8227073
116. Hems DA, Rodrigues LM, Whitton PD. Rapid stimulation by vasopressin, oxytocin and angiotensin II of glycogen degradation in hepatocyte suspensions. Biochem J. 1978;172(2):311–317. doi:10.1042/bj1720311
117. Whitton PD, Rodrigues LM, Hems DA. Stimulation by vasopressin, angiotensin and oxytocin of gluconeogenesis in hepatocyte suspensions. Biochem J. 1978;176(3):893–898. doi:10.1042/bj1760893
118. Rao RH. Pressor doses of angiotensin II increase hepatic glucose output and decrease insulin sensitivity in rats. J Endocrinol. 1996;148(2):311–318. doi:10.1677/joe.0.1480311
119. Ishizaka N, Hongo M, Sakamoto A, Saito K, Furuta K, Koike K. Liver lipid content is reduced in rat given 7-day administration of angiotensin II. J Renin Angiotensin Aldosterone Syst. 2011;12(4):462–468. doi:10.1177/1470320311415887
120. Moreno M, Ramalho LN, Sancho-Bru P, Ruiz-Ortega M, Ramalho F, Abraldes JG et al. Atorvastatin attenuates angiotensin II-induced inflammatory actions in the liver. Am J Physiol Gastrointest Liver Physiol. 2009;296(2):G147-G156. doi:10.1152/ajpgi.00462.2007
121. Nabeshima Y, Tazuma S, Kanno K, Hyogo H, Chayama K. Deletion of angiotensin II type I receptor reduces hepatic steatosis. J Hepatol. 2009;50(6):1226–1235. doi:10.1016/j.jhep.2009.01.018
122. Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimura F, Nishimura H et al. Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest. 1998;101(4): 755–760. doi:10.1172/JCI1899
123. Wang T, Li H, Zhao C, Chen C, Li J, Chao J et al. Recombinant adeno-associated virus-mediated kallikrein gene therapy reduces hypertension and attenuates its cardiovascular injuries. Gene Ther. 2004;11(17):1342–1350. doi:10.1038/sj.gt.3302294
124. Xiao HD, Fuchs S, Cole JM, Disher KM, Sutliff RL, Bernstein KE. Role of bradykinin in angiotensin-converting enzyme knockout mice. Am J Physiol Heart Circ Physiol. 2003;284(6): H1969-H1977. doi:10.1152/ajpheart.00010.2003
125. Niimura F, Labosky PA, Kakuchi J, Okubo S, Yoshida H, Oikawa T et al. Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest. 1995; 96(6):2947–2954. doi:10.1172/JCI118366
126. Hashimoto S, Adams JW, Bernstein KE, Schnermann J. Micropuncture determination of nephron function in mice without tissue angiotensin-converting enzyme. Am J Physiol Renal Physiol. 2005;288(3): F445-F452. doi:10.1152/ajprenal.00297.2004
127. Quan A. Fetopathy associated with exposure to angiotensin converting enzyme inhibitors and angiotensin receptor antagonists. Early Hum Dev. 2006;82(1):23–28. doi:10.1016/j.earlhumdev.2005.11.001
128. Sibony M, Segretain D, Gasc JM. Angiotensin-converting enzyme in murine testis: step-specific expression of the germinal isoform during spermiogenesis. Biol Reprod. 1994;50(5):1015– 1026. doi:10.1095/biolreprod50.5.1015
129. El-Dorry HA, Bull HG, Iwata K, Thornberry NA, Cordes EH, Soffer RL. Molecular and catalytic properties of rabbit testicular dipeptidyl carboxypeptidase. J Biol Chem. 1982;257(23):14128–14133. PMID:6754723
130. Howard TE, Shai SY, Langford KG, Martin BM, Bernstein KE. Transcription of testicular angiotensin-converting enzyme (ACE) is initiated within the 12th intron of the somatic ACE gene. Mol Cell Biol. 1990;10(8):4294–4302. doi:10.1128/mcb.10.8.4294-4302.1990
131. Hagaman JR, Moyer JS, Bachman ES, Sibony M, Magyar PL, Welch JE et al. Angiotensin-converting enzyme and male fertility. Proc Natl Acad Sci USA. 1998;95(5):2552–2557. doi:10.1073/pnas.95.5.2552
132. Kessler SP, Rowe TM, Gomos JB, Kessler PM, Sen GC. Physiological non-equivalence of the two isoforms of angiotensin-converting enzyme. J Biol Chem. 2000;275(34):26259–26264. doi:10.1074/jbc.M004006200
133. Deguchi E, Tani T, Watanabe H, Yamada S, Kondoh G. Dipeptidase-inactivated tACE action in vivo: selective inhibition of sperm-zona pellucida binding in the mouse. Biol Reprod. 2007;77(5):794–802. doi:10.1095/biolreprod.107.060004
134. Gianzo M, Urizar-Arenaza I, Muñoa-Hoyos I, Larreategui Z, Garrido N, Casis L et al. Human sperm testicular angiotensin-converting enzyme helps determine human embryo quality. Asian J Androl. 2018;20(5):498–504. doi:10.4103/aja.aja_25_18
135. Pencheva M, Keskinova D, Rashev P, Koeva Y, Atanassova N. Localization and distribution of testicular angiotensin I converting enzyme (ACE) in neck and mid-piece of spermatozoa from infertile men in relation to sperm motility. Cells. 2021;10(12):3572. doi:10.3390/cells10123572
136. Aleksinskaya MA, Nikolaeva MA, Danilov SM, Elistratova OS, Sukhikh GT. Quantitative study of testicular angiotensin-converting enzyme on the surface of human spermatozoa. Bull Exp Biol Med. 2006;141(1):36–39. doi:10.1007/s10517-006-0087-2
137. Hubert C, Savary K, Gasc JM, Corvol P. The hematopoietic system: a new niche for the renin-angiotensin system. Nat Clin Pract Cardiovasc Med. 2006;3(2):80–85. doi:10.1038/ncpcardio0449
138. Tavian M, Robin C, Coulombel L, Péault B. The human embryo, but not its yolk sac, generates lympho-myeloid stem cells: mapping multipotent hematopoietic cell fate in intraembryonic mesoderm. Immunity. 2001;15(3):487–495. doi:10.1016/s1074-7613(01)00193-5
139. Sinka L, Biasch K, Khazaal I, Péault B, Tavian M. Angiotensin-converting enzyme (CD 143) specifies emerging lympho-hematopoietic progenitors in the human embryo. Blood. 2012;119(16):3712–3723. doi:10.1182/blood-2010-11-314781
140. Jokubaitis VJ, Sinka L, Driessen R, Whitty G, Haylock DN, Bertoncello I et al. Angiotensin-converting enzyme (CD 143) marks hematopoietic stem cells in human embryonic, fetal, and adult hematopoietic tissues. Blood. 2008;111(8):4055–4063. doi:10.1182/blood-2007-05-091710
141. Zambidis ET, Park TS, Yu W, Tam A, Levine M, Yuan X et al. Expression of angiotensin-converting enzyme (CD 143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood. 2008;112(9):3601–3614. doi:10.1182/blood-2008-03-144766
142. Lin C, Datta V, Okwan-Duodu D, Chen X, Fuchs S, Alsabeh R et al. Angiotensin-converting enzyme is required for normal myelopoiesis. FASEB J. 2011;25(4):1145–1155. doi:10.1096/fj.10-169433
143. Azizi M, Rousseau A, Ezan E, Guyene TT, Michelet S, Grognet JM et al. Acute angiotensin-converting enzyme inhibition increases the plasma level of the natural stem cell regulator N-acetyl-seryl-aspartyl-lysyl-proline. J Clin Invest. 1996;97(3):839–844. doi:10.1172/JCI118484
144. Waeckel L, Bignon J, Liu JM, Markovits D, Ebrahimian TG, Vilar J et al. Tetrapeptide AcSDKP induces postischemic neovascularization through monocyte chemoattractant protein-1 signaling. Arterioscler Thromb Vasc Biol. 2006;26(4):773–779. doi:10.1161/01.ATV.0000203510.96492.14
145. Vlahakos DV, Balodimos C, Papachristopoulos V, Vassilakos P, Hinari E, Vlachojannis JG. Renin-angiotensin system stimulates erythropoietin secretion in chronic hemodialysis patients. Clin Nephrol. 1995;43(1):53–59. PMID:7697936.
146. Benöhr P, Harsch S, Proksch B, Gleiter CH. Does angiotensin II modulate erythropoietin production in HepG2 cells? Nephron Exp Nephrol. 2004;98(4):e124-e131. doi:10.1159/000081556
147. Benöhr P, Harsch S, Proksch B, Gleiter CH. Does angiotensin II modulate erythropoietin production in HepG2 cells? Nephron Exp Nephrol. 2004;98(4):e124-e131. doi:10.1159/000081556
148. Okwan-Duodu D, Datta V, Shen XZ, Goodridge HS, Bernstein EA, Fuchs S et al. Angiotensin-converting enzyme overexpression in mouse myelomonocytic cells augments resistance to Listeria and methicillin-resistant Staphylococcus aureus. J Biol Chem. 2010;285(50):39051–39060. doi:10.1074/jbc.M110.163782
149. Rameshwar P, Gascón P. Substance P (SP) mediates production of stem cell factor and interleukin-1 in bone marrow stroma: potential autoregulatory role for these cytokines in SP receptor expression and induction. Blood. 1995;86(2):482–490. PMID:7541664.
150. Tsubakimoto Y, Yamada H, Yokoi H, Kishida S, Takata H, Kawahito H et al. Bone marrow angiotensin AT1 receptor regulates differentiation of monocyte lineage progenitors from hematopoietic stem cells. Arterioscler Thromb Vasc Biol. 2009;29(10):1529–1536. doi:10.1161/ATVBAHA.109.187732
151. Eisenlohr LC, Bacik I, Bennink JR, Bernstein K, Yewdell JW. Expression of a membrane protease enhances presentation of endogenous antigens to MHC class I-restricted T lymphocytes. Cell. 1992;71(6):963–972. doi:10.1016/0092–8674(92)90392-p
152. Shen XZ, Lukacher AE, Billet S, Williams IR, Bernstein KE. Expression of angiotensin-converting enzyme changes major histocompatibility complex class I peptide presentation by modifying C termini of peptide precursors. J Biol Chem. 2008;283(15):9957– 9965. doi:10.1074/jbc.M709574200
153. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325(5940):612–616. doi:10.1126/science.1175202
154. Leuschner F, Panizzi P, Chico-Calero I, Lee WW, Ueno T, Cortez-Retamozo V et al. Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ Res. 2010;107(11):1364– 1373. doi:10.1161/CIRCRESAHA.110.227454
155. AbdAlla S, Lother H, Langer A, el Faramawy Y, Quitterer U. Factor XIIIA transglutaminase crosslinks AT1 receptor dimers of monocytes at the onset of atherosclerosis. Cell. 2004;119(3):343–354. doi:10.1016/j.cell.2004.10.006
156. Silva-Filho JL, Souza MC, Henriques Md, Morrot A, Savino W, Nunes MP et al. AT1 receptor-mediated angiotensin II activation and chemotaxis of T lymphocytes. Mol Immunol. 2011;48(15–16):1835–1843. doi:10.1016/j.molimm.2011.05.008
157. Lassègue B, San Martín A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 2012;110(10):1364–1390. doi:10.1161/CIRCRESAHA.111.243972
158. Becker JC, Houben R, Schrama D, Voigt H, Ugurel S, Reisfeld RA. Mouse models for melanoma: a personal perspective. Exp Dermatol. 2010;19(2):157–164. doi:10.1111/j.1600-0625.2009.00986.x
159. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–964. doi:10.1038/nri1733
160. Shen XZ, Li P, Weiss D, Fuchs S, Xiao HD, Adams JA et al. Mice with enhanced macrophage angiotensin-converting enzyme are resistant to melanoma. Am J Pathol. 2007;170(6):2122–2134. doi:10.2353/ajpath.2007.061205
161. Shiloh MU, MacMicking JD, Nicholson S, Brause JE, Potter S, Marino M et al. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity. 1999;10(1):29–38. doi:10.1016/s1074-7613(00)80004-7
162. Fleming I. Signaling by the angiotensin-converting enzyme. Circ Res. 2006;98(7):887–896. doi:10.1161/01.RES.0000217340.40936.53
163. Guimarães PB, Alvarenga ÉC, Siqueira PD, Paredes-Gamero EJ, Sabatini RA, Morais RL et al. Angiotensin II binding to angiotensin I-converting enzyme triggers calcium signaling. Hypertension. 2011;57(5):965–972. doi:10.1161/HYPERTENSIONAHA.110.167171
Дополнительные файлы
Рецензия
Для цитирования:
Налесник Е.О. Ангиотензинпревращающий фермент: хорошо знакомый незнакомец. Часть I. Артериальная гипертензия. 2023;29(4):353-370. https://doi.org/10.18705/1607-419X-2023-29-4-353-370
For citation:
Nalesnik E.O. Angiotensin-converting enzyme: a well-known stranger. Part I. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2023;29(4):353-370. (In Russ.) https://doi.org/10.18705/1607-419X-2023-29-4-353-370