Preview

Артериальная гипертензия

Расширенный поиск

Ангиотензин-превращающий фермент: хорошо знакомый незнакомец. Часть II

https://doi.org/10.18705/1607-419X-2023-29-6-543-556

EDN: BMYGAK

Аннотация

Ангиотензинпревращающий фермент (АПФ) конститутивно экспрессируется на поверхности эндотелиальных, эпителиальных и клеток иммунной системы (макрофаги, дендритные клетки). Считается, что основным источником циркулирующего АПФ являются легкие. Однако было также обнаружено, что другие органы, такие как тонкая кишка, почки, сердце, головной мозг, придатки яичников, предстательная железа, имеют уровни экспрессии АПФ, сравнимые с таковыми в легких. Экспрессия АПФ регулируется не только пассивно, количеством эндотелиальных клеток, но и функцией эндотелия. В целом биохимическая среда является движущей силой ферментативной активности АПФ, воздействуя на клетки, способные экспрессировать АПФ и регулирующие белки. Открытие тканевого АПФ изменило наши представления о патофизиологии многих заболеваний. В частности, оказалось, что в развитии артериальной гипертензии, диабетической нефропатии, острой и хронической болезни почек большее значение имеет почечный АПФ, чем циркулирующий.

Об авторе

Е. О. Налесник
Научно-исследовательский институт кардиологии — филиал Федерального государственного бюджетного научного учреждения «Томский национальный исследовательский медицинский центр Российской академии наук»
Россия

Налесник Елена Олеговна — научный сотрудник

Тел.: 8 (3822) 55–83–67

ул. Киевская, д. 111а, Томск, Россия, 634012



Список литературы

1. Kierszenbaum AL. Histology and cell biology: an introduction to pathology. Mosby Elsevier; Amsterdam, The Netherlands: 2007;824. Print Book & E-Book. ISBN 10:0323078427 / ISBN 13:9780323078429

2. Metzger R, Franke FE, Bohle RM, Alhenc-Gelas F, Danilov SM. Heterogeneous distribution of angiotensin I-converting enzyme (CD143) in the human and rat vascular systems: vessel, organ and species specificity. Microvasc Res. 2011;81(2):206–15. doi:10.1016/j.mvr.2010.12.003

3. Danilov SM, Metzger R, Klieser E, Sotlar K, Trakht IN, Garcia JGN. Tissue ACE phenotyping in lung cancer. PLoS One. 2019;14(12):e0226553. doi:10.1371/journal.pone.0226553

4. Defendini R, Zimmerman EA, Weare JA, Alhenc-Gelas F, Erdös EG. Angiotensin-converting enzyme in epithelial and neuroepithelial cells. Neuroendocrinology. 1983;37(1):32–40. doi:10.1159/000123512

5. Balcells E, Meng QC, Johnson WH Jr, Oparil S, Dell’Italia LJ. Angiotensin II formation from ACE and chymase in human and animal hearts: methods and species considerations. Am J Physiol. 1997;273(4): H1769-H1774. doi:10.1152/ajpheart.1997.273.4.H1769

6. Danser AH, Schalekamp MA, Bax WA, van den Brink AM, Saxena PR, Riegger GA et al. Angiotensin-converting enzyme in the human heart. Effect of the deletion/insertion polymorphism. Circulation. 1995;92(6):1387–1388. doi:10.1161/01.cir.92.6.1387

7. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86(4):1343–1346. doi:10.1172/JCI114844

8. Cruz N, Miranda JD, Crespo MJ. Modulation of vascular ACE by oxidative stress in young Syrian cardiomyopathic hamsters: therapeutic implications. J Clin Med. 2016;5(7):64. doi:10.3390/jcm5070064

9. Fagyas M, Úri K, Siket IM, Fülöp GÁ, Csató V, Daragó A et al. New perspectives in the renin-angiotensin- aldosterone system (RAAS) II: albumin suppresses angiotensin converting enzyme (ACE) activity in human. PLoS One. 2014;9(4):e87844. doi:10.1371/journal.pone.0087844

10. Bánhegyi V, Enyedi A, Fülöp GÁ, Oláh A, Siket IM, Váradi C et al. Human tissue angiotensin converting enzyme (ACE) activity is regulated by genetic polymorphisms, posttranslational modifications, endogenous inhibitors and secretion in the serum, lungs and heart. Cells. 2021;10(7):1708. doi:10.3390/cells10071708

11. Studer R, Reinecke H, Muller B, Holtz J, Just H, Drexler H. Increased angiotensin-I converting enzyme gene expression in the failing human heart. Quantification by competitive RNA polymerase chain reaction. J Clin Invest. 1994;94(1):301–310. doi:10.1172/JCI117322

12. Falkenhahn M, Franke F, Bohle RM, Zhu YC, Stauss HM, Bachmann S et al. Cellular distribution of angiotensin-converting enzyme after myocardial infarction. Hypertension. 1995;25(2):219–226. doi:10.1161/01.hyp.25.2.219

13. Goette A, Staack T, Röcken C, Arndt M, Geller JC, Huth C et al. Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. J Am Coll Cardiol. 2000;35(6):1669–1677. doi:10.1016/s0735-1097(00)00611-2

14. Kasi VS, Xiao HD, Shang LL, Iravanian S, Langberg J, Witham EA et al. Cardiac-restricted angiotensin-converting enzyme overexpression causes conduction defects and connexin dysregulation. Am J Physiol Heart Circ Physiol. 2007;293(1): H182–H192. doi:10.1152/ajpheart.00684.2006

15. Ehrlich JR, Hohnloser SH, Nattel S. Role of angiotensin system and effects of its inhibition in atrial fibrillation: clinical and experimental evidence. Eur Heart J. 2006;27(5):512–518. doi:10.1093/eurheartj/ehi668

16. Rasoul S, Carretero OA, Peng H, Cavasin MA, Zhuo J, Sanchez-Mendoza A et al. Antifibrotic effect of Ac-SDKP and angiotensin- converting enzyme inhibition in hypertension. J Hypertens. 2004;22(3):593–603. doi:10.1097/00004872-200403000-00023

17. Danilov SM, Balyasnikova IV, Danilova AS, Naperova IA, Arablinskaya NE, Borisov SE et al. Conformational fingerprinting of the angiotensin I-converting enzyme (ACE). 1. Application in sarcoidosis. J Proteome Res. 2010;9(11):5782–5793. doi:10.1021/pr100564r

18. Tikhomirova VE, Kost OA, Kryukova OV, Golukhova EZ, Bulaeva NI, Zholbaeva AZ et al. ACE phenotyping in human heart. PLoS One. 2017;12(8):e0181976. doi:10.1371/journal.pone.0181976

19. Silverstein E, Friedland J, Setton C. Angiotensin-converting enzyme in macrophages and Freund’s adjuvant granuloma. Isr J Med Sci. 1978;14(3):314–318. PMID: 205523

20. Basu R, Poglitsch M, Yogasundaram H, Thomas J, Rowe BH, Oudit GY. Roles of angiotensin peptides and recombinant human ACE2 in heart failure. J Am Coll Cardiol. 2017;69(7):805–819. doi:10.1016/j.jacc.2016.11.064

21. Navar LG, Kobori H, Prieto MC, Gonzalez-Villalobos RA. Intratubular renin-angiotensin system in hypertension. Hypertension. 2011;57(3):355–362. doi:10.1161/HYPERTENSIONAHA.110.163519

22. Campbell DJ. Clinical relevance of local renin angiotensin systems. Front Endocrinol (Lausanne). 2014;5:113. doi:10.3389/fendo.2014.00113

23. Culver S, Li C, Siragy HM. Intrarenal angiotensin-converting enzyme: the old and the new. Curr Hypertens Rep. 2017;19(10):80. doi:10.1007/s11906-017-0778-2

24. Alhenc-Gelas F, Baussant T, Hubert C, Soubrier F, Corvol P. The angiotensin converting enzyme in the kidney. J Hypertens Suppl. 1989;7(7): S9–13; discussion S14. doi:10.1097/00004872-198909007-00003

25. Gonzalez AA, Liu L, Lara LS, Seth DM, Navar LG, Prieto MC. Angiotensin II stimulates renin in inner medullary collecting duct cells via protein kinase C and independent of epithelial sodium channel and mineralocorticoid receptor activity. Hypertension. 2011;57(3):594–599. doi:10.1161/HYPERTENSIONAHA.110.165902

26. Harrison-Bernard LM, Navar LG, Ho MM, Vinson GP, el-Dahr SS. Immunohistochemical localization of ANG II AT1 receptor in adult rat kidney using a monoclonal antibody. Am J Physiol. 1997;273(1Pt2): F170–E177. doi:10.1152/ajprenal.1997.273.1.F170

27. Coffman TM. Under pressure: the search for the essential mechanisms of hypertension. Nat Med. 2011;17(11):1402–1409. doi:10.1038/nm.2541

28. Guyton AC. The surprising kidney-fluid mechanism for pressure control its infinite gain! Hypertension. 1990;16(6):725–730. doi:10.1161/01.hyp.16.6.725

29. Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci USA. 2006;103(47):17985–17990. doi:10.1073/pnas.0605545103

30. Gonzalez-Villalobos RA, Billet S, Kim C, Satou R, Fuchs S, Bernstein KE et al. Intrarenal angiotensin-converting enzyme induces hypertension in response to angiotensin I infusion. J Am Soc Nephrol. 2011;22(3):449–459. doi:10.1681/ASN.2010060624

31. Gonzalez-Villalobos RA, Janjoulia T, Fletcher NK, Giani JF, Nguyen MT, Riquier-Brison AD et al. The absence of intrarenal ACE protects against hypertension. J Clin Invest. 2013;123(5):2011–2023. doi:10.1172/JCI65460

32. Giani JF, Bernstein KE, Janjulia T, Han J, Toblli JE, Shen XZ et al. Salt sensitivity in response to renal injury requires renal angiotensin-converting enzyme. Hypertension. 2015;66(3):534–542. doi:10.1161/HYPERTENSIONAHA.115.05320

33. Giani JF, Eriguchi M, Bernstein EA, Katsumata M, Shen XZ, Li L et al. Renal tubular angiotensin converting enzyme is responsible for nitro-L- arginine methyl ester (L-NAME)-induced salt sensitivity. Kidney Int. 2017;91(4):856–867. doi:10.1016/j.kint.2016.10.007

34. Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59(3):251–287. doi:10.1124/pr.59.3.3

35. Eriguchi M, Yotsueda R, Torisu K, Kawai Y, Hasegawa S, Tanaka S et al. Assessment of urinary angiotensinogen as a marker of podocyte injury in proteinuric nephropathies. Am J Physiol Renal Physiol. 2016;310(4):F322–F333. doi:10.1152/ajprenal.00260.2015

36. Anderson S. Physiologic actions and molecular expression of the renin-angiotensin system in the diabetic rat. Miner Electrolyte Metab. 1998;24(6):406–411. doi:10.1159/000057402

37. Campbell DJ, Kelly DJ, Wilkinson-Berka JL, Cooper ME, Skinner SL. Increased bradykinin and “normal” angiotensin peptide levels in diabetic Sprague-Dawley and transgenic (mRen‑2)27 rats. Kidney Int. 1999;56(1):211–221. doi:10.1046/j.1523-1755.1999.00519.x

38. Mizuiri S, Ohashi Y. ACE and ACE2 in kidney disease. World J Nephrol. 2015;4(1):74–82. doi:10.5527/wjn.v4.i1.74

39. Clotet-Freixas S, Soler MJ, Palau V, Anguiano L, Gimeno J, Konvalinka A et al. Sex dimorphism in ANGII-mediated crosstalk between ACE2 and ACE in diabetic nephropathy. Lab Invest. 2018;98(9):1237–1249. doi:10.1038/s41374-018-0084-x

40. Ye M, Wysocki J, William J, Soler MJ, Cokic I, Batlle D. Glomerular localization and expression of Angiotensin-converting enzyme 2 and angiotensin-converting enzyme: implications for albuminuria in diabetes. J Am Soc Nephrol. 2006;17(11):3067–3075. doi:10.1681/ASN.2006050423

41. Tikellis C, Johnston CI, Forbes JM, Burns WC, Burrell LM, Risvanis J et al. Characterization of renal angiotensin-converting enzyme 2 in diabetic nephropathy. Hypertension. 2003;41(3):392–397. doi:10.1161/01.HYP.0000060689.38912.CB

42. Wysocki J, Goodling A, Burgaya M, Whitlock K, Ruzinski J, Batlle D et al. Urine RAS components in mice and people with type 1 diabetes and chronic kidney disease. Am J Physiol Renal Physiol. 2017;313(2):F487–F494. doi:10.1152/ajprenal.00074.2017

43. Zhao S, Ghosh A, Lo CS, Chenier I, Scholey JW, Filep JG et al. Nrf2 deficiency upregulates intrarenal angiotensin-converting enzyme‑2 and angiotensin 1–7 receptor expression and attenuates hypertension and nephropathy in diabetic mice. Endocrinology. 2018;159(2):836–852. doi:10.1210/en.2017-00752

44. Schnermann J, Briggs JP. Tubuloglomerular feedback: mechanistic insights from gene-manipulated mice. Kidney Int. 2008;74(4):418–426. doi:10.1038/ki.2008.145

45. Wagner MC, Campos-Bilderback SB, Chowdhury M, Flores B, Lai X, Myslinski J et al. Proximal tubules have the capacity to regulate uptake of albumin. J Am Soc Nephrol. 2016;27(2):482–494. doi:10.1681/ASN.2014111107

46. Eriguchi M, Lin M, Yamashita M, Zhao TV, Khan Z, Bernstein EA et al. Renal tubular ACE-mediated tubular injury is the major contributor to microalbuminuria in early diabetic nephropathy. Am J Physiol Renal Physiol. 2018;314(4):F531–F542. doi:10.1152/ajprenal.00523.2017

47. Venkatachalam MA, Griffin KA, Lan R, Geng H, Saikumar P, Bidani AK. Acute kidney injury: a springboard for progression in chronic kidney disease. Am J Physiol Renal Physiol. 2010;298(5): F1078–F1094. doi:10.1152/ajprenal.00017.2010

48. Devarajan P. Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol. 2006;17(6):1503–1520. doi:10.1681/ASN.2006010017

49. Efrati S, Berman S, Hamad RA, Siman-Tov Y, Ilgiyaev E, Maslyakov I et al. Effect of captopril treatment on recuperation from ischemia/reperfusion-induced acute renal injury. Nephrol Dial Transplant. 2012;27(1):136–145. doi:10.1093/ndt/gfr256

50. Pazoki-Toroudi HR, Hesami A, Vahidi S, Sahebjam F, Seifi B, Djahanguiri B. The preventive effect of captopril or enalapril on reperfusion injury of the kidney of rats is independent of angiotensin II AT1 receptors. Fundam Clin Pharmacol. 2003;17(5):595–598. doi:10.1046/j.1472-8206.2003.00188.x

51. Stafford-Smith M, Podgoreanu M, Swaminathan M, Phillips-Bute B, Mathew JP, Hauser EH et al; Perioperative Genetics and Safety Outcomes Study (PEGASUS) Investigative Team. Association of genetic polymorphisms with risk of renal injury after coronary bypass graft surgery. Am J Kidney Dis. 2005;45(3):519–530. doi:10.1053/j.ajkd.2004.11.021

52. Pedroso JA, Paskulin Dd, Dias FS, de França E, Alho CS. Temporal trends in acute renal dysfunction among critically ill patients according to I/D and –262A > T ACE polymorphisms. J Bras Nefrol. 2010;32(2):182–194. English, Portuguese. PMID: 21103678

53. Isbir SC, Tekeli A, Ergen A, Yilmaz H, Ak K, Civelek A et al. Genetic polymorphisms contribute to acute kidney injury after coronary artery bypass grafting. Heart Surg Forum. 2007;10(6): E439–E444. doi:10.1532/HSF98.20071117

54. du Cheyron D, Fradin S, Ramakers M, Terzi N, Guillotin D, Bouchet B et al. Angiotensin converting enzyme insertion/deletion genetic polymorphism: its impact on renal function in critically ill patients. Crit Care Med. 2008;36(12):3178–3183. doi:10.1097/ CCM.0b013e318186a299

55. Налесник Е. О., Муслимова Э. Ф., Афанасьев С. А., Репин А. Н. Ассоциация полиморфизмов гена ACE с сердечно-сосудистыми осложнениями у пациентов, перенесших плановые чрескожные коронарные вмешательства. Российский кардиологический журнал. 2022;27(10):4968. doi:10.15829/1560-4071-2022-4968

56. Vilander LM, Kaunisto MA, Pettilä V. Genetic predisposition to acute kidney injury a systematic review. BMC Nephrol. 2015; 16:197. doi:10.1186/s12882-015-0190-6

57. Anderson S, Rennke HG, Brenner BM. Therapeutic advantage of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat. J Clin Invest. 1986;77(6):1993–2000. doi:10.1172/JCI112528

58. Gómez GI, Velarde V. Boldine improves kidney damage in the goldblatt 2K1C model avoiding the increase in TGF-β. Int J Mol Sci. 2018;19(7):1864. doi:10.3390/ijms19071864

59. Wang XF, Zhang BH, Lu XQ, Wang P. Beraprost sodium, a stable analogue of PGI2, inhibits the renin-angiotensin system in the renal tissues of rats with chronic renal failure. Kidney Blood Press Res. 2018;43(4):1231–1244. doi:10.1159/000492405

60. Knoll GA, Fergusson D, Chassé M, Hebert P, Wells G, Tibbles LA et al. Ramipril versus placebo in kidney transplant patients with proteinuria: a multicentre, double-blind, randomised controlled trial. Lancet Diabetes Endocrinol. 2016;4(4):318–326. doi:10.1016/S2213-8587(15)00368-X

61. Natesh R, Schwager SL, Sturrock ED, Acharya KR. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature. 2003;421(6922):551–554. doi:10.1038/nature01370

62. Sharma RK, Douglas RG, Louw S, Chibale K, Sturrock ED. New ketomethylene inhibitor analogues: synthesis and assessment of structural determinants for N-domain selective inhibition of angiotensin-converting enzyme. Biol Chem. 2012;393(6):485–493. doi:10.1515/hsz-2012-0127

63. Peng H, Carretero OA, Vuljaj N, Liao TD, Motivala A, Peterson EL et al. Angiotensin-converting enzyme inhibitors: a new mechanism of action. Circulation. 2005;112(16):2436–2445. doi:10.1161/CIRCULATIONAHA.104.528695

64. Xu H, Yang F, Sun Y, Yuan Y, Cheng H, Wei Z et al. A new antifibrotic target of Ac-SDKP: inhibition of myofibroblast differentiation in rat lung with silicosis. PLoS One. 2012;7(7): e40301. doi:10.1371/journal.pone.0040301

65. Wei L, Clauser E, Alhenc-Gelas F, Corvol P. The two homologous domains of human angiotensin I-converting enzyme interact differently with competitive inhibitors. J Biol Chem. 1992;267(19):13398–13405. PMID: 1320019

66. Emanueli C, Grady EF, Madeddu P, Figini M, Bunnett NW, Parisi D et al. Acute ACE inhibition causes plasma extravasation in mice that is mediated by bradykinin and substance P. Hypertension. 1998;31(6):1299–1304. doi:10.1161/01.hyp.31.6.1299

67. Douglas RG, Sharma RK, Masuyer G, Lubbe L, Zamora I, Acharya KR et al. Fragment-based design for the development of N-domain-selective angiotensin‑1‑converting enzyme inhibitors. Clin Sci (Lond). 2014;126(4):305–313. doi:10.1042/CS20130403


Дополнительные файлы

Рецензия

Для цитирования:


Налесник Е.О. Ангиотензин-превращающий фермент: хорошо знакомый незнакомец. Часть II. Артериальная гипертензия. 2023;29(6):548-556. https://doi.org/10.18705/1607-419X-2023-29-6-543-556. EDN: BMYGAK

For citation:


Nalesnik E.O. Angiotensin-converting enzyme: a well-known stranger. Part II. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2023;29(6):548-556. (In Russ.) https://doi.org/10.18705/1607-419X-2023-29-6-543-556. EDN: BMYGAK

Просмотров: 945


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)