Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

Meta-analysis of experimental studies of the effect of melatonin monotherapy on hemodynamic parameters in normotensive and hypertensive rats

https://doi.org/10.18705/1607-419X-2024-2369

EDN: THGOLK

Abstract

Objective. The purpose of the work is to use a meta-analysis to investigate the effect of melatonin monotherapy on the hemodynamic parameters of normotensive and hypertensive rats.

Design and methods. For our metaanalysis, we selected 39 publications, of which 28 studied the effect of melatonin monotherapy on hemodynamic parameters in normotensive rats, 12 in SHR rats, 7 in rats with fructose-induced hypertension, 3 in rats with L-NAME-induced hypertension. Meta-analysis of study results was conducted using the statistical program Review Manager 5.3 (Cochrane Library).

Results. Our meta-analysis showed that melatonin has a dose-dependent hypotensive and bradycardic effect with a single intravenous administration. The hypotensive effect of chronic administration of melatonin will increase with the duration of therapy. Moreover, the hypotensive effect of melatonin is significantly higher in hypertensive animals compared to normotensive ones. Long-term therapy with melatonin reduced blood pressure levels in normotensive animals by no more than 2 mm Hg, and in hypertensive rats by an average of 20–30 mm Hg.

Conclusions. As a result, since melatonin demonstrates a good hypotensive effect in various models of experimental hypertension, it is advisable to continue clinical studies of the possibility of using melatonin in the treatment of hypertension, which should focus on monotherapy, dose selection, various methods of increasing bioavailability and prolonging the effect.

About the Authors

M. G. Pliss
Almazov National Medical Research Centre
Russian Federation

Mikhail G. Pliss, PhD, Head, Department of Experimental Physiology and Pharmacology, Preclinical and Translational Research Centre

St Petersburg



N. V. Kuzmenko
Almazov National Medical Research Centre; Pavlov First Saint Petersburg State Medical University
Russian Federation

Nataliya V. Kuzmenko, PhD in Biology, Senior Researcher, Department of Experimental Physiology and Pharmacology, Preclinical and Translational Research Centre, Almazov National Medical Research Centre, Researcher of Blood Circulation Biophysics Laboratory

2 Akkuratov str., St Petersburg, 197341



V. A. Tsyrlin
Almazov National Medical Research Centre
Russian Federation

Vitaliy A. Tsyrlin, MD, PhD, DSc, Professor, Chief Researcher, Department of Experimental Physiology and Pharmacology of Preclinical and Translational Research Centre

St Petersburg



References

1. Grossman E, Laudon M, Zisapel N. Effect of melatonin on nocturnal blood pressure: meta-analysis of randomized controlled trials. Vasc Health Risk Manag. 2011;7:577–584. doi:10.2147/VHRM.S24603

2. Hadi A, Ghaedi E, Moradi S, Pourmasoumi M, Ghavami A, Kafeshani M. Effects of melatonin supplementation on blood pressure: a systematic review and meta-analysis of randomized controlled trials. Horm Metab Res. 2019;51(3):157–164. doi:10.1055/a-0841-6638

3. Akbari M, OstadmohammadiV, Mirhosseini N, Lankarani KB, Tabrizi R, Keshtkaran Z et al. The effects of melatonin supplementation on blood pressure in patients with metabolic disorders: a systematic review and meta-analysis of randomized controlled trials. J Hum Hypertens. 2019;33(3):202–209. doi:10.1038/s41371-019-0166-2

4. Lee EK, Poon P, Yu CP, Lee VW, Chung VC, Wong SY. Controlled-release oral melatonin supplementation for hypertension and nocturnal hypertension: a systematic review and meta-analysis. J Clin Hypertens (Greenwich). 2022;24(5):529–535. doi:10.1111/jch.14482

5. Pechanova O, Paulis L, Simko F. Peripheral and central effects of melatonin on blood pressure regulation. Int J Mol Sci. 2014;15(10):17920–17937. doi:10.3390/ijms151017920

6. Ng KY, Leong MK, Liang H, Paxinos G. Melatonin receptors: distribution in mammalian brain and their respective putative functions. Brain Struct Funct. 2017;222(7):2921–2939. doi:10.1007/s00429-017-1439-6

7. Nikolaev G, Robeva R, Konakchieva R. Membrane melatonin receptors activated cell signaling in physiology and disease. Int J Mol Sci. 2021;23(1):471. doi:10.3390/ijms23010471

8. Pliss MG, Kuzmenko NV, Rubanova NS, Tsyrlin VA. Dose-dependent effects of melatonin on the functioning of the cardiovascular system and on the behavior of normotensive rats of different ages. Adv Gerontol. 2019;32(1–2): 76–84. In Russian. https://link.springer.com/article/10.1134/S2079057019030111

9. Yu Q, Guo Q, Jin S, Gao C, Zheng P, Li DP et al. Melatonin suppresses sympathetic vasomotor tone through enhancing GABAA receptor activity in the hypothalamus. Front Physiol. 2023;14:1166246. doi:10.3389/fphys.2023.1166246

10. Campos LA, Cipolla-Neto J, Michelini LC. Melatonin modulates baroreflex control via area postrema. Brain Behav. 2013;3(2):171–177. doi:10.1002/brb3.123

11. Simko F, Reiter RJ, Pechanova O, Paulis L. Experimental models of melatonin-deficient hypertension. Front Biosci (Landmark Ed). 2013;18(2):616–625. doi:10.2741/4125

12. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. Wiley: Chichester, 2009. 421 p.

13. Cheung RT, Tipoe GL, Tam S, Ma ES, Zou LY, Chan PS. Preclinical evaluation of pharmacokinetics and safety of melatonin in propylene glycol for intravenous administration. J Pineal Res. 2006;41(4):337–343. doi:10.1111/j.1600-079X.2006.00372.x

14. Chuang JI, Chen SS, Lin MT. Melatonin decreases brain serotonin release, arterial pressure and heart rate in rats. Pharmacology. 1993;47(2):91–97. doi:10.1159/000139083

15. K-Laflamme A, Wu L, Foucart S, de Champlain J. Impaired basal sympathetic tone and alpha1 adrenergic responsiveness in association with the hypotensive effect of melatonin in spontaneously hypertensive rats. Am J Hypertens. 1998;11(2):219– 229. doi:10.1016/s0895-7061(97)00401-9

16. Mathes AM, Heymann P, Ruf C, Huhn R, Hinkelbein J, Volk T et al. Endogenous and exogenous melatonin exposure attenuates hepatic MT1 melatonin receptor protein expression in rat. Antioxidants (Basel). 2019;8(9):408. doi:10.3390/antiox8090408

17. Mizrak B, Celbiş O, Parlakpinar H, Olmez E. Effect of melatonin and atenolol on carbon monoxide cardiotoxicity: an experimental study in rats. Basic Clin Pharmacol Toxicol. 2006;98(6):565–568. doi:10.1111/j.1742-7843.2006.pto266.x

18. Balarastaghi S, Barangi S, Hosseinzadeh H, Imenshahidi M, Moosavi Z, Razavi BM et al. Melatonin improves arsenic-induced hypertension through the inactivation of the Sirt1/autophagy pathway in rat. Biomed Pharmacother. 2022;151:113135. doi:10.1016/j.biopha.2022.113135

19. Benova T, Viczenczova C, Radosinska J, Bacova B, Knezl V, Dosenko V et al. Melatonin attenuates hypertensionrelated proarrhythmic myocardial maladaptation of connexin 43 and propensity of the heart to lethal arrhythmias. Can J Physiol Pharmacol. 2013;91(8):633–639. doi:10.1139/cjpp-2012-0393

20. Bernasconi PA, Cardoso NP, Reynoso R, Scacchi P, Cardinali DP. Melatonin and diet-induced metabolic syndrome in rats: impact on the hypophysial-testicular axis. Horm Mol Biol Clin Investig. 2013;16(2):101–112. doi:10.1515/hmbci-2013-0005

21. Cabassi A, Bouchard JF, Dumont EC, Girouard H, Le Jossec M, Lamontagne D et al. Effect of antioxidant treatments on nitrate tolerance development in normotensive and hypertensive rats. J Hypertens. 2000;18(2):187–196. doi:10.1097/00004872-200018020-00009

22. Cardinali DP, Bernasconi PA, Reynoso R, Toso CF, Scacchi P. Melatonin may curtail the metabolic syndrome: studies on initial and fully established fructose-induced metabolic syndrome in rats. Int J Mol Sci. 2013;14(2):2502–2514. doi:10.3390/ijms14022502

23. Deniz E, Colakoglu N, Sari A, Sonmez MF, Tugrul I, Oktar S et al. Melatonin attenuates renal ischemia-reperfusion injury in nitric oxide synthase inhibited rats. Acta Histochem. 2006;108(4):303–309. doi:10.1016/j.acthis.2006.04.002

24. Dhanabalan K, Mzezewa S, Huisamen B, Lochner A. Mitochondrial oxidative phosphorylation function and mitophagy in ischaemic/reperfused hearts from control and high-fat diet rats: effects of long-term melatonin treatment. Cardiovasc Drugs Ther. 2020;34(6):799–811. doi:10.1007/s10557-020-06997-9

25. Durkina AV, Bernikova OG, Mikhaleva NJ, Paderin NM, Sedova KA, Gonotkov MA et al. Melatonin pretreatment does not modify extrasystolic burden in the rat ischemia-reperfusion model. J Physiol Pharmacol. 2021;72(1). doi:10.26402/jpp.2021.1.15

26. Ewida SF, Al-Sharaky DR. Implication of renal aquaporin 3 in fructose-induced metabolic syndrome and melatonin protection. J Clin Diagn Res. 2016;10(4): CF06–CF11. doi:10.7860/JCDR/2016/18362.7656

27. Girouard H, Chulak C, Lejossec M, Lamontagne D, de Champlain J. Vasorelaxant effects of the chronic treatment with melatonin on mesenteric artery and aorta of spontaneously hypertensive rats. J Hypertens. 2001;19(8):1369–1377. doi:10.1097/00004872-200108000-00004

28. Huang L, Zhang C, Hou Y, Laudon M, She M, Yang S et al. Blood pressure reducing effects of piromelatine and melatonin in spontaneously hypertensive rats. Eur Rev Med Pharmacol Sci. 2013;17(18):2449–2456.

29. İlhan S, Ateşşahin D, Ateşşahin A, Mutlu E, Onat E, Şahna E. 2,3,7,8 tetrachlorodibenzo-p-dioxin-induced hypertension: the beneficial effects of melatonin. Toxicol Ind Health. 2015;31(4):298–303. doi:10.1177/0748233712472521

30. Kantar Ş, Türközkan N, Bircan FS, Paşaoğlu ÖT. Beneficial effects of melatonin on serum nitric oxide, homocysteine, and ADMA levels in fructose-fed rats. Pharm Biol. 2015;53(7):1035– 1041. doi:10.3109/13880209.2014.957782

31. Kawashima K, Miwa Y, Fujimoto K, Oohata H, Nishino H, Koike H. Antihypertensive action of melatonin in the spontaneously hypertensive rat. Clin Exp Hypertens A. 1987;9(7):1121–1131. doi:10.3109/10641968709160037

32. Kim C, Kim N, Joo H, Youm JB, Park WS, Cuong DV et al. Modulation by melatonin of the cardiotoxic and antitumor activities of adriamycin. J Cardiovasc Pharmacol. 2005;46(2):200– 210. doi:10.1097/01.fjc.0000171750.97822.a2

33. Kitagawa A, Ohta Y, Ohashi K. Melatonin improves metabolic syndrome induced by high fructose intake in rats. J Pineal Res. 2012;52(4):403–413. doi:10.1111/j.1600-079X.2011.00955.x

34. Klimentova J, Cebova M, Barta A, Matuskova Z, Vrankova S, Rehakova R et al. Effect of melatonin on blood pressure and nitric oxide generation in rats with metabolic syndrome. Physiol Res. 2016;65(Suppl 3): S373–S380. doi:10.33549/physiolres.933436

35. Leibowitz A, Peleg E, Sharabi Y, Shabtai Z, Shamiss A, Grossman E. The role of melatonin in the pathogenesis of hypertension in rats with metabolic syndrome. Am J Hypertens. 2008;21(3):348–351. doi:10.1038/ajh.2007.60

36. Morishima I, Matsui H, Mukawa H, Hayashi K, Toki Y, Okumura K et al. Melatonin, a pineal hormone with antioxidant property, protects against adriamycin cardiomyopathy in rats. Life Sci. 1998;63(7):511–521. doi:10.1016/s0024-3205(98)00302-6

37. Nava M, Quiroz Y, Vaziri N, Rodriguez-Iturbe B. Melatonin reduces renal interstitial inflammation and improves hypertension in spontaneously hypertensive rats. Am J Physiol Renal Physiol. 2003;284(3): F447–F454. doi:10.1152/ajprenal.00264.2002

38. Ovali MA, Oztopuz O, Vardar SA. Melatonin ameliorates cardiac remodelling in fructose-induced metabolic syndrome rat model by using genes encoding cardiac potassium ion channels. Mol Biol Rep. 2021;48(8):5811–5819. doi:10.1007/s11033-021-06526-3

39. Paulis L, Pechanova O, Zicha J, Krajcirovicova K, Barta A, Pelouch V et al. Melatonin prevents fibrosis but not hypertrophy development in the left ventricle of NG-nitro-L-arginine-methyl ester hypertensive rats. J Hypertens Suppl. 2009;27(6):S11–S16. doi:10.1097/01.hjh.0000358831.33558.97

40. Pechánová O, Zicha J, Paulis L, Zenebe W, Dobesová Z, Kojsová S et al. The effect of N-acetylcysteine and melatonin in adult spontaneously hypertensive rats with established hypertension. Eur J Pharmacol. 2007;561(1–3):129–136. doi:10.1016/j.ejphar.2007.01.035

41. Rezzani R, Porteri E, De Ciuceis C, Bonomini F, Rodella LF, Paiardi S et al. Effects of melatonin and pycnogenol on small artery structure and function in spontaneously hypertensive rats. Hypertension. 2010;55(6):1373–1380. doi:10.1161/HYPERTENSIONAHA.109.148254

42. Sarihan ME, Parlakpinar H, Ciftci O, Yilmaz F, Sagir M, Yilmaz O et al. Protective effects of melatonin against 2,3,7,8 tetrachlorodibenzo-p-dioxin-induced cardiac injury in rats. Eur J Pharmacol. 2015;762:214–220. doi:10.1016/j.ejphar.2015.04.054

43. Simko F, Pechanova O, Pelouch V, Krajcirovicova K, Mullerova M, Bednarova K et al. Effect of melatonin, captopril, spironolactone and simvastatin on blood pressure and left ventricular remodelling in spontaneously hypertensive rats. J Hypertens Suppl. 2009;27(6): S5–S10. doi:10.1097/01.hjh.0000358830.95439.e8

44. Simko F, Bednarova KR, Krajcirovicova K, Hrenak J, Celec P, Kamodyova N et al. Melatonin reduces cardiac remodeling and improves survival in rats with isoproterenol-induced heart failure. J Pineal Res. 2014;57(2):177–184. doi:10.1111/jpi.12154

45. Simko F, Baka T, Krajcirovicova K, Repova K, Aziriova S, Zorad S et al. Effect of melatonin on the renin-angiotensinaldosterone system in l-NAME-induced hypertension. Molecules. 2018;23(2):265. doi:10.3390/molecules23020265

46. Simon N, Vidal J, Mouchet J, Bruguerolle B. Lack of daily rhythms major modifications despite continuous infusion of melatonin in the rat. J Vet Pharmacol Ther. 2002;25(4):285–288. doi:10.1046/j.1365-2885.2002.00419.x

47. Tain YL, Huang LT, Lin IC, Lau YT, Lin CY. Melatonin prevents hypertension and increased asymmetric dimethylarginine in young spontaneous hypertensive rats. J Pineal Res. 2010;49(4):390– 398. doi:10.1111/j.1600-079X.2010.00806.x

48. Xu MF, Ho S, Qian ZM, Tang PL. Melatonin protects against cardiac toxicity of doxorubicin in rat. J Pineal Res. 2001; 31(4):301–307. doi:10.1034/j.1600-079x.2001.310403.x

49. Yang L, Wang J, Deng Y, Gong C, Li Q, Chen Q et al. Melatonin improves neurological outcomes and preserves hippocampal mitochondrial function in a rat model of cardiac arrest. PLoS One. 2018;13(11):e0207098. doi:10.1371/journal.pone.0207098

50. Zeman M, Szántóová K, Stebelová K, Mravec B, Herichová I. Effect of rhythmic melatonin administration on clock gene expression in the suprachiasmatic nucleus and the heart of hypertensive TGR(mRen2)27 rats. J Hypertens Suppl. 2009;27(6): S21-S26. doi:10.1097/01.hjh.0000358833.41181.f6

51. Kuzmenko NV, Tsyrlin VA, Pliss MG. Meta-analysis of dependence of the development of experimental renovascular hypertension “2 kidneys, 1 clamp” on lifestyle factors. Translyatsionnaya Meditsina = Translational Medicine. 2023;10(3):183–208. doi:10.18705/2311-4495-2023-10-3-183-208. In Russian.

52. Blagonravov ML, Bryk AA, Medvedeva EV, Goryachev VA, Chibisov SM, Kurlaeva AO et al. Structure of rhythms of blood pressure, heart rate, excretion of electrolytes, and secretion of melatonin in normotensive and spontaneously hypertensive rats maintained under conditions of prolonged daylight duration. Bull Exp Biol Med. 2019;168(1):18–23. doi:10.1007/s10517-019-04636-4. In Russian.

53. Viswanathan M, Laitinen JT, Saavedra JM. Differential expression of melatonin receptors in spontaneously hypertensive rats. Neuroendocrinology. 1992;56(6):864–870. doi:10.1159/000126318

54. Azar TA, Sharp JL, Lawson DM. Effect of housing rats in dim light or long nights on heart rate. J Am Assoc Lab Anim Sci. 2008;47(4):25–34. PMID: 18702448

55. Jockers R, Maurice P, Boutin JA, Delagrange P. Melatonin receptors, heterodimerization, signal transduction and binding sites: what’s new? Br J Pharmacol. 2008;154(6):1182–1195. doi:10.1038/bjp.2008.184

56. Ivanova EA, Bechtold DA, Dupré SM, Brennand J, Barrett P, Luckman SM et al. Altered metabolism in the melatonin-related receptor (GPR50) knockout mouse. Am J Physiol Endocrinol Metab. 2008;294(1):E176–E182. doi:10.1152/ajpendo.00199.2007

57. Benova M, Herichova I, Stebelova K, Paulis L, Krajcirovicova K, Simko F et al. Effect of L-NAME-induced hypertension on melatonin receptors and melatonin levels in the pineal gland and the peripheral organs of rats. Hypertens Res. 2009;32(4):242–247. doi:10.1038/hr.2009.1

58. Fan W, He Y, Guan X, Gu W, Wu Z, Zhu X et al. Involvement of the nitric oxide in melatonin-mediated protection against injury. Life Sci. 2018;200:142–147. doi:10.1016/j.lfs.2018.03.035

59. Atanasova M, Petkova Z, Pechlivanova D, Dragomirova P, Blazhev A, Tchekalarova J. Strain-dependent effects of long-term treatment with melatonin on kainic acid-induced status epilepticus, oxidative stress and the expression of heat shock proteins. Pharmacol Biochem Behav. 2013;111:44–50. doi:10.1016/j.pbb.2013.08.006

60. Erşahin M, Sehirli O, Toklu HZ, Süleymanoglu S, EmekliAlturfan E, Yarat A et al. Melatonin improves cardiovascular function and ameliorates renal, cardiac and cerebral damage in rats with renovascular hypertension. J Pineal Res. 2009;47(1):97–106. doi:10.1111/j.1600-079X.2009.00693.x

61. Zhang DM, Jiao RQ, Kong LD. High dietary fructose: direct or indirect dangerous factors disturbing tissue and organ functions. Nutrients. 2017;9(4):335. doi:10.3390/nu9040335

62. Bunbupha S, Apaijit K, Potue P, Maneesai P, Pakdeechote P. Hesperidin inhibits L-NAME-induced vascular and renal alterations in rats by suppressing the renin-angiotensin system, transforming growth factor-β1, and oxidative stress. Clin Exp Pharmacol Physiol. 2021;48(3):412–421. doi:10.1111/1440-1681.13438

63. Török J. Participation of nitric oxide in different models of experimental hypertension. Physiol Res. 2008;57(6):813–825. doi:10.33549/physiolres.931581

64. Dardente H, Wyse CA, Birnie MJ, Dupré SM, Loudon AS, Lincoln GA et al. Amolecular switch for photoperiod responsiveness in mammals. Curr Biol. 2010;20(24):2193–2198. doi:10.1016/j.cub.2010.10.048

65. Ostrowska Z, Kos-Kudla B, Marek B, Kajdaniuk D. Influence of lighting conditions on daily rhythm of bone metabolism in rats and possible involvement of melatonin and other hormones in this process. Endocr Regul. 2003;37(3):163–174.

66. Baltaci AK, Mogulkoc R, Kul A, Bediz CS, Ugur A. Opposite effects of zinc and melatonin on thyroid hormones in rats. Toxicology. 2004;195(1):69–75. doi:10.1016/j.tox.2003.09.001

67. Waki H, Katahira K, Polson JW, Kasparov S, Murphy D, Paton JF. Automation of analysis of cardiovascular autonomic function from chronic measurements of arterial pressure in conscious rats. Exp Physiol. 2006;91(1):201–213. doi:10.1113/expphysiol.2005.031716

68. Gupta AK, Cornelissen G, Greenway FL, Dhoopati V, Halberg F, Johnson WD. Abnormalities in circadian blood pressure variability and endothelial function: pragmatic markers for adverse cardiometabolic profiles in asymptomatic obese adults. Cardiovasc Diabetol. 2010;9:58. doi:10.1186/1475-2840-9-58

69. Yeleswaram K, McLaughlin LG, Knipe JO, Schabdach D. Pharmacokinetics and oral bioavailability of exogenous melatonin in preclinical animal models and clinical implications. J Pineal Res. 1997;22(1):45–51. doi:10.1111/j.1600-079x.1997.tb00302.x

70. Harpsøe NG, Andersen LP, GögenurI, Rosenberg J. Clinical pharmacokinetics of melatonin: a systematic review. Eur J Clin Pharmacol. 2015;71(8):901–909. doi:10.1007/s00228-015-1873-4

71. Macleod MR, O’Collins T, Horky LL, Howells DW, Donnan GA. Systematic review and meta-analysis of the efficacy of melatonin in experimental stroke. J Pineal Res. 2005;38(1): 35–41. doi:10.1111/j.1600-079X.2004.00172.x

72. Zeng L, Zhu Y, Hu X, Qin H, Tang J, Hu Z et al. Efficacy of melatonin in animal models of intracerebral hemorrhage: a systematic review and meta-analysis. Aging (Albany NY). 2021;13(2):3010–3030. doi:10.18632/aging.202457

73. Mao ZJ, Lin H, Xiao FY, Huang ZQ, Chen YH. Melatonin against myocardial ischemia-reperfusion injury: a meta-analysis and mechanism insight from animal studies. Oxid Med Cell Longev. 2020;2020:1241065. doi:10.1155/2020/1241065

74. Kuzmenko NV, Tsyrlin VA, Pliss MG. Meta-analysis of experimental studies of diet-dependent effects of melatonin monotherapy on circulatory levels of triglycerides, cholesterol, glucose and insulin in rats. Journal of Evolutionary Biochemistry and Physiology. 2023;59(1):213–231. doi:10.1134/S0022093023010180. In Russian.

75. Chivchibashi-Pavlova D, Stoyanov GS, Bratoeva K. Effects of melatonin supplementation on the aortic wall in a diet-induced obesity rat model. Cureus. 2023;15(1):e33333. doi:10.7759/cureus.33333

76. Zetner D, Andersen LP, Rosenberg J. Pharmacokinetics of alternative administration routes of melatonin: a systematic review. Drug Res (Stuttg). 2016;66(4):169–173. doi:10.1055/s-0035-1565083

77. Ait Abdellah S, Raverot V, Gal C, Guinobert I, Bardot V, Blondeau C et al. Bioavailability of melatonin after administration of an oral prolonged-release tablet and an immediate-release sublingual spray in healthy male volunteers. Drugs RD. 2023; 23(3):257–265. doi:10.1007/s40268-023-00431-9

78. Mohanbhai SJ, Sardoiwala MN, Gupta S, Shrimali N, Choudhury SR, Sharma SS et al. Colon targeted chitosan-melatonin nanotherapy for preclinical inflammatory bowel disease. Biomater Adv. 2022;136:212796. doi:10.1016/j.bioadv.2022.212796


Supplementary files

Review

For citations:


Pliss M.G., Kuzmenko N.V., Tsyrlin V.A. Meta-analysis of experimental studies of the effect of melatonin monotherapy on hemodynamic parameters in normotensive and hypertensive rats. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2024;30(2):132-158. (In Russ.) https://doi.org/10.18705/1607-419X-2024-2369. EDN: THGOLK

Views: 337


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)