Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

Neuroprotective effects of glucose-lowering drugs in rat focal brain ischemia-reperfusion model

https://doi.org/10.18705/1607-419X-2023-29-6-579-592

EDN: BWYQSY

Abstract

Background. Ischemic stroke is one of the leading causes of death in patients with type 2 diabetes mellitus (DM). According to the results of clinical and experimental studies, the ability of glucagon-like peptide-1 receptor agonists (GLP-1RA) to reduce the risk and severity of stroke in DM has been proven; data on the sodium-glucose cotransporter-2 inhibitors (SGLT-2i) effect are scarce. There has been no direct comparative study of the GLP-1RA and SGLT-2i neuroprotective effect.

Objective. To evaluate and to compare the effect of GLP-1RA of varying duration of action and SGLT-2i of varying selectivity on the neurological deficit severity and the brain damage volume in a transient focal brain ischemia model in rats without DM.

Design and methods. Male Wistar rats were divided into groups (n = 10 each) depending on the therapy received: “EMPA” (empagliflozin per os 2 mg/kg once daily), “CANA” (canagliflozin per os 25 mg/kg once daily), “LIRA” (liraglutide 1 mg/kg s. c. once daily), “DULA” (dulaglutide 0,12 mg/kg s. c. every 72 hours), “SEMA” (semaglutide 0,012 mg /kg s. c. once daily), “MET” (metformin per os 200 mg/kg once daily — comparison group), “Control” (administration of 0,9 % NaCl solution s. c. once daily). After 7 days, all groups underwent transient focal 30-minute filament middle cerebral artery occlusion. After 48 hours of reperfusion, neurological deficit was assessed using the Garcia scale, then the brain was collected and sections were stained with 1 % triphenyltetrazolium chloride solution to calculate the damage volume.

Results. Neurological deficit severity in the “LIRA” (14,50 (12,25; 15,25) points) and “SEMA” (14,00 (13,50; 18,00) points) groups was significantly less than in the “Control” group (11.00 (6,75; 12,00) points). The use of both SGLT-2i, as well as metformin, had no effect on the neurological status. At the same time, therapy with all study drugs had an infarct-limiting effect, compared with the “Control” group (damage volume 24,50 (14,69; 30,12) % of the total brain volume). At the same time, the brain damage volume in the “MET” group (12,93 (6,65, 26,66) %) was greater than that in the “EMPA” (6,08 (2,97, 7,63) %), “CANA” (5,11 (3,96; 8,34) %), “LIRA” (3,40 (2,09; 8,08) %), “DULA” (4,37 (2,72; 5,40) %), “SEMA” (5,19 (4,11; 7,83) %) groups.

Conclusions. SGLT-2i of varying selectivity and GLP-1RA of varying duration of action have a similar infarct-limiting effect in acute experimental brain ischemia. At the same time, GLP-1RA neuroprotective potential is higher, as it is characterized by an additional positive effect on the neurological status.

About the Authors

A. V. Simanenkova
Almazov National Medical Research Centre; Pavlov University
Russian Federation

Anna V. Simanenkova, MD, PhD, Senior Researcher, Laboratory of Clinical Endocrinology, Assistant of the Faculty Therapy Department; Assistant of Faculty Department No. 1

Phone: 8 (812) 702–37–30

2 Akkuratov str., St Petersburg, Russia, 197341



O. S. Fuks
Almazov National Medical Research Centre
Russian Federation

Oksana S. Fuks, MD, Research Assistant, Labo-ratory of Novel Coronavirus Infection and Post-COVID Syndrome, World-Class Research Centre for Personalized Medicine

St Petersburg



N. V. Timkina
Almazov National Medical Research Centre; Pavlov University
Russian Federation

Natalya V. Timkina, MD, Junior Researcher, Laboratory of Clinical Endocrinology; PhD Student of Therapy Department No. 1

St Petersburg



P. A. Tikhomirova
Pavlov University
Russian Federation

Polina A. Tikhomirova, Clinical Resident, Department of Radiology and Radiation Medicine

St Petersburg



T. D. Vlasov
Pavlov University
Russian Federation

Timur D. Vlasov, MD, PhD, Head, Department of Pathophysiology with the Course of Clinical Pathophysiology

St Petersburg



T. L. Karonova
Almazov National Medical Research Centre; Pavlov University
Russian Federation

Tatiana L. Karonova, MD, PhD, Head, Laboratory of Clinical Endocrinology, Professor of the Department of Endocrinology; Professor of Therapy Department No. 1

St Petersburg



References

1. Dedov II, Shestakova MV, Mayorov AYu, Mokrysheva NG, Andreeva EN, Bezlepkina OB et al. Standards of specialized diabetes care: clinical recommendations (Issue 11). Diabetes Mellitus. 2023;26(2S):1–231. doi:10.14341/DM13042. In Russian.

2. American Diabetes Association. Standards of medical care in diabetes. Diabetes Care. 2022;45(1). doi.org/10.2337/dc22-S007

3. Wajngarten M, Silva GS. Hypertension and stroke: update on treatment. Eur Cardiol. 2019;14(2): 111–115. doi:10.15420/ecr.2019

4. Li AL, Ji Y, Zhu S, Hu ZH, Xu XJ, Wang YW et al. Risk probability and influencing factors of stroke in followed-up hypertension patients. BMC Cardiovasc Disord. 2022;22(1):328. doi:10.1186/s12872-022-02780-w

5. Dedov II, Shestakova MV, Vikulova OK, Zheleznyakova AV, Isakov MА. Epidemiological characteristics of diabetes mellitus in the Russian Federation: clinical and statistical analysis according to the Federal diabetes register data of 01.01.2021. Diabetes Mellitus. 2021;24(3):204–221. doi:10.14341/DM12759. In Russian.

6. Kristensen SL, Rørth R, Jhund PS, Docherty KF, Sattar N, Preiss D et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019;7(10):776–785. doi:10.1016/S2213-8587(19)30249-9

7. Tsai WH, Chuang SM, Liu SC, Lee CC, Chien MN, Leung CH et al. Effects of SGLT2 inhibitors on stroke and its subtypes in patients with type 2 dia-betes: a systematic review and metaanalysis. Sci Rep. 2021;11(1):15364. doi:10.1038/s41598-021-94945-4

8. Pawlos A, Broncel M, Woźniak E, Gorzelak-Pabiś P. Neuroprotective effect of SGLT2 inhibitors. Molecules. 2021;26(23): 7213. doi:10.3390/molecules 26237213

9. Zhu H, Zhang Y, Shi Z, Lu D, Li T, Ding Y et al. The neuroprotection of liraglutide against ischaemia-induced apoptosis through the activation of the PI3K/AKT and MAPK pathways. Sci Rep. 2016;6:26859. doi:10.1038/srep26859

10. Sato K, Kameda M, Yasuhara T, Agari T, Baba T, Wang F et al. Neuroprotective effects of liraglutide for stroke model of rats. Int J Mol Sci. 2013;14(11):21513–21524. doi:10.3390/ijms141121513

11. Basalay MV, Davidson SM, Yellon DM. Neuroprotection in rats following ischaemia-reper- fusion injury by GLP-1 analogues-liraglutide and semaglutide. Cardiovasc Drugs Ther. 2019;33(6):661–667. doi:10.1007/s10557-019-06915-8

12. Yang X, Feng P, Zhang X, Li D, Wang R, Ji C et al. The diabetes drug semaglutide reduces infarct size, inflammation, and apoptosis, and normalizes neurogenesis in a rat model of stroke. Neuropharmacology. 2019;158:107748. doi:10.1016/j.neuropharm.2019.107748

13. Ozempic (semaglutide). Tertiary pharmacology/toxicology review. 2017.

14. Karimipour M, Shojaei Zarghani S, Mohajer Milani M, Soraya H. Pre-treatment with metformin in comparison with posttreatment reduces cerebral ischemia reperfusion induced injuries in rats. Bull Emerg Trauma. 2018;6(2):115–121. doi:10.29252/beat-060205

15. Al-Awar A, Almási N, Szabó R, Takacs I, Murlasits Z, Szűcs G et al. Novel potentials of the DPP-4 inhibitor sitagliptin against ischemia-reperfusion (I/R) injury in rat ex-vivo heart model. Int J Mol Sci. 2018;19(10):3226. doi:10.3390/ijms19103226

16. Koizumi J. Experimental studies of ischemic brain edema. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Japanese J Stroke. 1986;8:1–8. doi.org/10.3995/jstroke.8.1

17. Longa EZ, Weinstein PR, Carlson S, Cum-mins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989; 20(1):84–91. doi:10.1161/01.str.20.1.84

18. Garcia JH, Wagner S, Liu KF, Hu XJ. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke. 1995;26(4):627–34, discussion 635. doi:10.1161/01.str.26.4.627

19. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR. A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab. 1990;10(2):290–293.

20. Yu AS, Hirayama BA, Timbol G, Liu J, Basarah E, Kepe V et al. Functional expression of SGLTs in rat brain. Am J Physiol Cell Physiol. 2010;299(6): C1277–C1284. doi:10.1152/ajpcell.00296.2010

21. Lu P, Song Y, Zhu J, Meng H, Ye N, Wang M et al. Liraglutide protects injured neurons through down-regulating RAGE expression in ischemic rat brain after MCAO. Int J Clin Exp Pathol 2017;10(6):7232–7241.

22. Briyal S, Shah S, Gulati A. Neuroprotective and anti-apoptotic effects of liraglutide in the rat brain following focal cerebral ischemia. Neuroscience. 2014;28:269–281. doi:10.1016/j.neuroscience. 2014. 09.064

23. Deng C, Cao J, Han J, Li J, Li Z, Shi N. Liraglutide activates the Nrf2/HO-1 antioxidant pathway and protects brain nerve cells against cerebral ischemia in diabetic rats. Comput Intell Neurosci. 2018;2018:3094504. doi:10.1155/2018/3094504

24. Drucker DJ. Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology. 2002;122(2):531–

25. doi:10.1053/gast.2002.31068

26. Аthаudа D. Thе gluсаgon-likе рерtidе-1 (GLР) rесерtor аs а thеrареutiс tаrgеt in раrkinson’s disеаsе: mесhаnisms of асtion. Drug Disсovery Todаy. 2016;21(5):802–818.

27. Tyurenkov IN, Bakulin DA,

28. Kurkin DV, Volotova EV. Neuroprotective properties of incretin mimetics in brain ischemia and neurodegenerative diseases. Problems Endocrinology. 2017;63(1):58–67. doi:10.14341/probl201763158-67. In Russian.

29. Teramoto S, Miyamoto N, Yatomi K, Tanaka Y, Oishi H, Arai H et al. Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia. J Cerebral Blood Flow Metab. 2011;31(8):1696–1705. doi:10.1038/jcbfm.2011.51

30. Мudаliаr S. Еffесts оf inсrеtin hоrmоnеs оn bеtа-сеll mаss аnd funсtiоn, bodу wеight, аnd hераtiс аnd mуосаrdiаl funсtiоn. Am J Med. 2010;123(l):19–27.

31. Oeseburg H, de Boer RA, Buikema H, van der Harst P, van Gilst WH, Silljé HH. Glucagon-like peptide-1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A. Arterioscler Thromb Vasc Biol. 2010;30(7):1407–1414. doi:10.1161/ATVBAHA.110. 206425

32. Goud A, Zhong J, Peters M, Brook RD, Rajagopalan S. GLP-1 agonists and blood pressure: a review of the evidence. Curr Hypertens Rep. 2016; 18(2):16. doi:10.1007/s11906-015-0621-6

33. Ribeiro-Silva JC, Tavares CAM, Girardi ACC. The blood pressure lowering effects of glucagon-like peptide-1 receptor agonists: A mini-review of the potential mechanisms. Curr Opin Pharmacol. 2023;69:102355. doi:10.1016/j.coph.2023.102355

34. Wang B, Zhong J, Lin H, Zhao Z, Yan Z, He H et al. Blood pressure-lowering effects of GLP-1 receptor agonists exenatide and liraglutide: a meta-analysis of clinical trials. Diabetes Obes Metab. 2013;15(8):737–749. doi:10.1111/dom.12085

35. Bharucha AE, Charkoudian N, Andrews CN, Camilleri M, Sletten D, Zinsmeister AR et al. Effects of glucagon-like peptide-1, yohimbine, and nitrergic modulation on sympathetic and parasympathetic activity in humans. Am J Physiol Regul Integr Comp Physiol. 2008;295(3):R874–R880. doi:10.1152/ajpregu.00153.2008

36. Fonseca VA, Devries JH, Henry RR, Dons-mark M, Thomsen HF, Plutzky J. Reductions in systolic blood pressure with liraglutide in patients with type 2 diabetes: insights from a patient-level pooled analysis of six randomized clinical trials. J Diabetes Complications. 2014;28(3):399–405.

37. Zhang Q, Zhou S, Liu L. Efficacy and safety evaluation of SGLT2i on blood pressure control in patients with type 2 diabetes and hypertension: a new meta-analysis. Diabetol Metab Syndr. 2023;15(1):118. doi:10.1186/s13098-023-01092-z

38. Abdel-Latif RG, Rifaai RA, Amin EF. Empagliflozin alleviates neuronal apoptosis induced by cerebral ischemia/ reperfusion injury through HIF-1α/VEGF signaling pathway. Arch Pharm Res. 2020;43(5):514–525. doi:10.1007/s12272-020-01237-y

39. Al-Mudhafar AM, Abed FN, Abosaooda M, Al-Mudhafar RH, Hadi NR. Neuroprotective effect of empagliflozinon cerebral ischemia/reperfusion injury in rat model. Ann Romanian Society Cell Biol. 2021;4876–4887.

40. Wang MY, Yu X, Lee Y, McCorkle SK, Chen S, Li J et al. Dapagliflozin suppresses glucagon signaling in rodent models of diabetes. Proc Natl Acad Sci USA. 2017;114(25):6611–6616. doi:10.1073/pnas.170 5845114

41. Poppe R, Karbach U, Gambaryan S, Wiesinger H, Lutzenburg M, Kraemer M et al. Expression of the Na+-D-glucose cotransporter SGLT1 in neurons. J Neurochem. 1997;69(1):84–94. doi:10.1046/j.1471-4159.1997.69010084.x

42. Koepsell H. Glucose transporters in brain in health and disease. Pflugers Arch. 2020;472(9):1299–1343. doi:10.1007/s00424-020-02441-x

43. Enerson BE, Drewes LR. The rat blood-brain barrier transcriptome. J Cereb Blood Flow Metab. 2006;26(7):959–973. doi:10.1038/sj.jcbfm.9600249

44. Nguyen T, Wen S, Gong M, Yuan X, Xu D, Wang C et al. Dapagliflozin activates neurons in the central nervous system and regulates cardiovascular activity by inhibiting SGLT-2 in mice. Diabetes Metab Syndr Obes. 2020;13:2781–2799. doi:10.2147/DMSO.S258593

45. Simanenkova AV, Fuks ОS, Timkina NV, Karonova TL, Tsyba DL, Kirik ОV et al. An experimental study of the neuroprotective effect of sodium-glucose cotransporter type 2 inhibitors. J Evo-lutionary Biochem Physiol. 2022;58(5):1540–1553. doi:10.1134/S0022093022050234

46. Song P, Onishi A, Koepsell H, Vallon V. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin Ther Targets. 2016;20(9):1109–1125. doi:10.1517/14728222.2016.1168808

47. Zhou Y, Wu W. The sodium-glucose co-transporter 2 inhibitor, empagliflozin, protects against diabetic cardiomyopathy by inhibition of the endoplasmic reticulum stress pathway. Cell Physiol Biochem. 2017;41(6):2503–2512. doi:10.1159/000475942


Supplementary files

Review

For citations:


Simanenkova A.V., Fuks O.S., Timkina N.V., Tikhomirova P.A., Vlasov T.D., Karonova T.L. Neuroprotective effects of glucose-lowering drugs in rat focal brain ischemia-reperfusion model. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2023;29(6):579-592. (In Russ.) https://doi.org/10.18705/1607-419X-2023-29-6-579-592. EDN: BWYQSY

Views: 722


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)