Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

The effect of blockade of the renin‑angiotensin‑aldosterone system on skin microcirculation in rats with impaired renal function

https://doi.org/10.18705/1607-419X-2024-2424

EDN: YPEUBO

Abstract

The renin-angiotensin-aldosterone system (RAAS) is involved in the regulation of kidney function and blood pressure (BP). In renal dysfunction, hyperactivation of the RAAS leads to an increase in BP and impaired permeability of the nephron glomerular filter. Blockade of the RAAS is one of the methods of nephroprotection. Objective. To compare the effect of an angiotensin-converting enzyme inhibitor (IACE), angiotensin I receptor blocker (ARB), and a selective slow calcium channel blocker (BCC) on the functional state of the microvasculature of the skin of rats with nephrectomy (NE), fed with a high-salt diet (HS). Design and methods. Five groups of Wistar rats were studied. The SO group: sham-operated animals that received a standard diet; the HS+NE group: rats with ¾ NE and HS (4 % NaCl); HS+NE+Ler-, HS+NE+Lis-, HS+NE+Los-groups: rats with ¾ NE and HS, that were treated with the BCC lerkanidipin (Ler, 3 mg/kg), IACE lisinopril (Lis, 30 mg/kg) or the ARB losartan (Los, 10 mg/kg), respectively. After 4 months, a study was performed using laser Doppler flowmetry (LDF). Results. In rats of the HS+NE group, uremia is accompanied by an increase in BP (by 16,9 % compared to the SO group). The treatment with IACE and ARB in rats with NE and HS prevents the rise in BP, while BCC does not reduce BP. The LDF-study showed that the increased intensity of initial skin perfusion in rats of the HS+NE group (7,2 ± 0,3 compared to 6,5 ± 0,2 p. u. in the SO group) is not corrected by BCC (6,9 ± 0,3 p. u.), but is reduced by the use of IACE (6,4 ± 0,2 p. u.) and ARB (6,1 ± 0,2 p. u.). Wavelet analysis showed that the increase in tonic effects on blood vessels in the endothelial, neurogenic and myogenic regulatory circuits, characteristic of renal dysfunction, decreases with the use of all studied drugs. RAAS blockade in rats with ¾ NE and HS does not prevent a decrease in the reactivity of skin microvessels to acetylcholine (ACh), and the use of BCC restores the response of skin blood flow to ACh to the control level. Conclusions. In Wistar rats, NE in combination with HS leads to an increase in BP, an increase in tonic effects on skin microvessels in the endothelial, neurogenic and myogenic ranges, as well as a decrease in the reactivity of skin blood flow to ACh. Inhibition of the RAAS by the treatment of IACE and ARB prevents the increase in BP, but does not improve the reactivity of skin microvessels. The use of BCC in rats with NE and HS does not reduce BP, but improves the reactivity of skin microvasculature to ACh.

About the Authors

G. T. Ivanova
Pavlov Institute of Physiology, Russian Academy of Sciences
Russian Federation

Galina T. Ivanova - PhD in Biology Sciences, Senior Researcher, Laboratory of Physiology of the Cardiovascular and Lymphatic Systems, Pavlov Institute of Physiology, Russian Academy of Sciences.

6 emb. Makarova, St Petersburg, 199034

Phone: 8 (812) 328–07–01



M. Kh. Khasun
Pavlov University
Russian Federation

Mohamad H. Khasun - MD, PhD, Associate Professor, Department of Propaedeutics of Internal Diseases, Pavlov University.

St Petersburg



M. M. Parastaeva
Pavlov University
Russian Federation

Marina M. Parastaeva - PhD in Biology Sciences, Senior Researcher, Nephrology Laboratory of Clinical Physiology of the Kidney, Research Institute of Neurology, Pavlov University.

St Petersburg



A. Sh. Rumyantsev
Pavlov University; St Petersburg State University
Russian Federation

Alexander Sh. Rumyantsev - MD, PhD, DSc, Professor, Department of Internal Diseases, Pavlov University; Professor, Department of Propaedeutics of Internal Diseases, St Petersburg State University.

St Petersburg



O. N. Beresneva
Pavlov University
Russian Federation

Olga N. Beresneva - PhD in Biology Sciences, Senior Researcher, Institute of Nephrology Laboratory of Clinical Physiology of the Kidney, Research Institute of Neurology, Pavlov University.

St Petersburg



References

1. Ruiz-Ortega M, Rayego-Mateos S, Lamas S, Ortiz A, Rodrigues-Diez RR. Targeting the progression of chronic kidney disease. Nat Rev Nephrol. 2020;16(5):269–288. doi:10.1038/s41581-019-0248-y

2. Düsing P, Zietzer A, Goody PR, Hosen MR, Kurts C, Nickenig G et al. Vascular pathologies in chronic kidney disease: pathophysiological mechanisms and novel therapeutic approaches. J Mol Med. 2021;99(3):335–348. doi:10.1007/s00109–021–02037–7

3. Burnier M, DamianakiA. Hypertension as cardiovascular risk factor in chronic kidney disease. Circ Res. 2023;132(8):1050–1063. doi:10.1161/CIRCRESAHA.122.321762

4. Hamrahian SM, Falkner B. Hypertension in chronic kidney disease. Adv Exp Med Biol. 2017;956:307–325. doi:10.1007/5584_2016_84

5. Maquigussa E, Paterno JC, de Oliveira Pokorny GH, da Silva Perez M, Varela VA, da Silva Novaes A et al. Klotho and PPAR Gamma activation mediate the renoprotective effect of losartan in the 5/6 nephrectomy model. Front Physiol. 2018:9:1033. doi:10.3389/fphys.2018.01033

6. Williams VR, Scholey JW. Angiotensin-converting enzyme 2 and renal disease. Curr Opin Nephrol Hypertens. 2018;27(1):35–41. doi:10.1097/MNH.0000000000000378

7. Remuzzi G, Perico N, Macia M, Ruggenenti P.The role of renin-angiotensin-aldosterone system in the progression of chronic kidney disease. Kidney Int Suppl. 2005;(99): S57–S65. doi:10.1111/j.1523-1755.2005.09911.x

8. Böckmann I, Lischka J, Richter B, Deppe J, Rahn A, Fischer DC et al. FGF23-mediated activation of local RAAS promotes cardiac hypertrophy and fibrosis. Int J Mol Sci. 2019;20(18):4634. doi:10.3390/ijms20184634

9. Murphy DP, Drawz PE, Foley RN. Trends in angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker use among those with impaired kidney function in the United States. J Am Soc Nephrol. 2019;30(7):1314–1321. doi:10.1681/ASN.2018100971

10. Zhang Y, He D, Zhang W, Xing Y, Guo Y, Wang F et al. ACE inhibitor benefit to kidney and cardiovascular outcomes for patients with non-dialysis chronic kidney disease stages 3–5: a network meta-analysis of randomised clinical trials. Drugs. 2020;80(8):797–811. doi:10.1007/s40265-020-01290-3

11. Ames MK, Atkins CE, Pitt B. The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med. 2019;33(2):363–382. doi:10.1111/jvim.15454

12. Shah R, Sparks MA. Renin-angiotensin system inhibition in advanced chronic kidney disease: how low can the kidney function go? Curr Opin Nephrol Hypertens. 2019;28(2):171–177. doi:10.1097/MNH.0000000000000484

13. Chávez-Íñiguez JS, Rifkin BS. Dual RAAS blockade in CKD: does the hype have teeth? Kidney360. 2022;3(7):1277–1280. doi:10.34067/KID.0000912022

14. Nehme A, Zouein FA, Zayeri ZD, Zibara K.An update on the tissue renin angiotensin system and its role in physiology and pathology. J Cardiovasc Dev Dis. 2019;6(2):14. doi:10.3390/jcdd6020014

15. Singh KD, Karnik SS. Angiotensin receptors: structure, function, signaling and clinical applications. J Cell Signal. 2016;1(2):111. doi:10.4172/jcs.1000111

16. Caputo I, Bertoldi G, Driussi G, Cacciapuoti M, Calò LA. The RAAS goodfellas in cardiovascular System. J Clin Med. 2023;12(21):6873. doi:10.3390/jcm12216873

17. Nagata D, Hishida E, Masuda T. Practical strategy for treating chronic kidney disease (CKD)-associated with hypertension. Int J Nephrol Renovasc Dis. 2020;13:171–178. doi:10.2147/IJNRD.S259931

18. Khasun MH, Rumyantsev ASh, Beresneva ON, Ivanova GT, Parastaeva MM, Sipovskii VG. The model of functional disorders in rats with kidney nephrectomy ¾ in comparison with a high-salt diet. Nephrology. 2023;27(4):86–91. doi:10.36485/1561-6274-2023-27-4-86-91. In Russian.

19. Rossi M, Carpi A, Galetta F, Franzoni F, Santoro G.The investigation of skin blood flowmotion: a new approach to study the microcirculatory impairment in vascular diseases? Biomed Pharmacother. 2006;60(8):437–442. doi:10.1016/j.biopha.2006.07.012

20. Ku E, Lee BJ, Wei J, Weir MR. Hypertension in CKD: core curriculum 2019. Am J Kidney Dis. 2019;74(1):120–131. doi:10.1053/j.ajkd.2018.12.044

21. Damianaki A, Polychronopoulou E, Wuerzner G, Burnier M. New aspects in the management of hypertension in patients with chronic kidney disease not on renal replacement therapy. High Blood Press Cardiovasc Prev. 2022;29(2):125–135. doi:10.1007/s40292-021-00495-1

22. Grassi G, Robles NR, Seravalle G, Fici F. Lercanidipine in the management of hypertension: an update. J Pharmacol Pharmacother. 2017;8(4):155–165. doi:10.4103/jpp.JPP_34_17

23. Schaab EH, Lanchote VL, Nardotto GHB, Pereira MPM, Dantas M, Paiva CE et al. Effect of lercanidipine on the pharmacokinetics-pharmacodynamics of carvedilol enantiomers in patients with chronic kidney disease. J Clin Pharmacol. 2019;60(1):75–85. doi:10.1002/jcph.1485

24. Ferri N, Corsini A, Pontremoli R. Antihypertensive treatment with calcium channel blockers and renal protection: Focus on lercanidipine and lercanidipine/enalapril. Eur Rev Med Pharmacol Sci. 2022;26(20):7482–7492. doi:10.26355/eurrev_202210_30018

25. Cerbai E, MugelliA. Lercanidipine and t-type calcium current. Eur Rev Med Pharmacol Sci. 2018;22(12):4025–4031. doi:10.26355/eurrev_201806_15289

26. Ivanova GT, Beresneva ON. Functional state of mesenteric arteries and vessels of the skin microcirculatory bed in rats with experimental kidney dysfunction. J Evol Biochem Phys. 2023;59:1648–1659. doi:10.1134/S0022093023050150

27. Bovée DM, Uijl E, Severs D, Rubio-Beltrán E, van Veghel R, Maassen van den Brink A et al. Dietary salt modifies the blood pressure response to renin-angiotensin inhibition in experimental chronic kidney disease. Am J Physiol Renal Physiol. 2021;320(4): F654–F668. doi:10.1152/ajprenal.00603

28. Schneider MP, Raff U, Kopp C, Scheppach JB, Toncar S, Wanner C et al. Skin sodium concentration correlates with left ventricular hypertrophy in CKD. J Am Soc Nephrol. 2017;28(6):1867–1876. doi:10.1681/ASN.2016060662

29. Ivanova GT, Khasun MH, Parastaeva MM, Rumyantsev ASh, Beresneva ON. Influence of excessive salt consumption on the functional state of microvascular vessels of the skin of rats with renal dysfunction. Nephrology. 2024;28(1):105–115. doi:10.36485/1561-6274-2024-28-1-105-115. In Russian.

30. Lobov GI, Ivanova GT. Regulation of arterial tone in rats fed a long-term high-salt diet. J Evol Biochem Phys. 2021;57:145–155. doi:10.1134/S0022093021010142


Review

For citations:


Ivanova G.T., Khasun M.Kh., Parastaeva M.M., Rumyantsev A.Sh., Beresneva O.N. The effect of blockade of the renin‑angiotensin‑aldosterone system on skin microcirculation in rats with impaired renal function. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2024;30(4):400-412. (In Russ.) https://doi.org/10.18705/1607-419X-2024-2424. EDN: YPEUBO

Views: 530


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)