Variants of the vitamin D receptor gene and the expression of microRNA‑21, microRNA‑125a, microRNA‑125b and microRNA‑214 in coronary heart disease
https://doi.org/10.18705/1607-419X-2025-2513
EDN: JWMLNF
Abstract
Background. The protective effects of vitamin D in relation to atherogenesis are realized by vitamin D receptors (VDR). Variants rs10735810, rs731236, rs1544410 and rs797532 of the VDR gene are involved in regulating the stability of its mRNA. МicroRNA‑214, microRNA‑125a, microRNA‑125b and microRNA‑21 bind to the 3’regulatory domain of the VDR gene and affect VDR protein expression.
Оbjective. To evaluate the expression levels of microRNA‑214, microRNA‑125a, microRNA‑125b and microRNA‑21 in coronary heart disease (CHD) patients with rs10735810, rs731236, rs1544410 and rs797532 variants of the VDR gene.
Design and methods. The genotypes of the VDR gene were determined in 766 CHD patients and in 336 people without CHD (comparison group) by polymerase chain reaction (PCR) followed by restriction analysis. MicroRNA expression was determined by real-time PCR.
Results. The ff, Ff genotypes and the f allele of the VDR gene (rs10735810) were more often detected in CHD patients than in the comparison group (p = 0,001, p = 0,03 and p = 0,047, respectively). Carriage of the ff (rs10735810) genotype of the VDR gene was associated with an increased risk of CHD (odds ratio (OR) = 1,80; 95 % confidence interval (CI): 1,30–2,50, p = 0,0004). The aa genotype of the VDR gene (rs797532) and the bb genotype of the VDR gene (rs1544410) were more common in CHD patients than in the comparison group (p = 0,008 and p = 0,001). The presence of the aa and bb genotypes of the VDR gene was associated with an increased risk of CHD (OR = 1,50; 95 % CI: 1,11÷2,02, p = 0,008, OR = 1,77; 95 % CI: 1,35÷2,32, p = 0,001, respectively). The expression levels of microRNA‑214, microRNA‑125a, microRNA‑125b and microRNA‑21 in the blood are higher in CHD patients than in the control group (p < 0,001). The expression of microRNA‑125a was higher in smoking patients than in non-smokers (59,85 (21,69; 73,06) conventional units of expression (UE) and 32,00 (4,59; 67,85) UE, respectively; p = 0,04). In CHD patients with Tt genotype of the VDR gene (rs731236), the expression of microRNA‑214 is higher than in carriers of the tt genotype of the VDR gene (p = 0,03). In CHD patients with the aa genotype of the VDR gene (rs797532), the expression of microRNA‑214, microRNA‑125a, microRNA‑125b and microRNA‑21 in the blood is higher than in patients with the AA genotype of the VDR gene (p < 0,05). The expression of microRNA‑125a, microRNA‑125b and microRNA‑21 in the blood of CHD patients, carriers of the bb genotype of the VDR gene (rs1544410), is higher than in those with the BB genotype of the VDR gene (p < 0,05). Conclusion. MicroRNA‑214, microRNA‑125a, microRNA‑125b and microRNA‑21, genotypes aa, ff and bb of the VDR gene (rs797532, rs10735810, and rs1544410 variants), represent promising markers of CHD. Variants of the VDR gene can affect the expression levels of microRNA‑214, microRNA‑125a, microRNA‑125b and microRNA‑21.
About the Authors
Z. I. IonovaRussian Federation
Zhanna I. Ionova, MD, PhD, Associate Professor, Department of Therapy # 2 with a Course in Endocrinology and Cardiology at the Clinic Named after Academician G. F. Lang
6/8 Lev Tolstoy str., St Petersburg, 197022
O. A. Berkovich
Russian Federation
Olga A. Berkovich, MD, PhD, DSc, Professor, Department of Therapy # 2 with a Course in Endocrinology and Cardiology at the Clinic Named after Academician G. F. Lang
6/8 Lev Tolstoy str., St Petersburg, 197022
O. D. Belyaeva
Russian Federation
Olga D. Belyaeva, MD, PhD, DSc, Professor, Department of Therapy # 2 with a Course in Endocrinology and Cardiology at the Clinic Named after Academician G. F. Lang
6/8 Lev Tolstoy str., St Petersburg, 197022
M. I. Zaraisky
Russian Federation
Mikhail I. Zaraisky, MD, PhD, DSc, Professor, Department of Medical Genetics, I. I. Mechnikov Northwestern State Medical University, Head, Laboratory of Molecular Diagnostics, Russian Federation National Medical Center for Molecular Medicine
St Petersburg
References
1. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al.; ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407–477. https://doi.org/10.1093/eurheartj/ehz425
2. National Healthcare Project // ORGZDRAV: News. Opinions. Training. Bulletin of the VSHOUZ. 2018;3(13). (In Russ.) Available at: https://cyberleninka.ru/article/n/natsionalnyy-proektzdravoohranenie
3. O’Sullivan JW, Ashley EA, Elliott PM. Polygenic risk scores for the prediction of cardiometabolic disease. Eur Heart J. 2023;44(2):89–99. https://doi.org/10.1093/eurheartj/ehac648
4. Semaev S, Shakhtshneider E. Genetic risk score for coronary heart disease: review. J Pers Med. 2020;10(4):239. https://doi.org/10.3390/jpm10040239
5. Yan X, Wei Y, Wang D, Zhao J, Zhu K, Liu Y, et al. Four common vitamin D receptor polymorphisms and coronary artery disease susceptibility: A trial sequential analysis. PLoS One. 2022;17(10):e0275368. https://doi.org/10.1371/journal.pone.0275368
6. Donda KT, Torres BA, Khashu M, Maheshwari A. Single nucleotide polymorphisms in neonatal necrotizing enterocolitis. Curr Pediatr Rev. 2022;18(3):197–209. https://doi.org/10.2174/1573396318666220117091621
7. Alimardani M, Moghbeli M, Rastgar-Moghadam A, Shandiz FH, Abbaszadegan MR. Single nucleotide polymorphisms as the efficient prognostic markers in breast cancer. Curr Cancer Drug Targets. 2021;21(9):768–793. https://doi.org/10.2174/1568009621666210525151846
8. Xiao M, Yang S, Zhou A, Li T, Liu J, Chen Y, et al. MiR‑27a‑3p and miR‑30b‑5p inhibited-vitamin D receptor involved in the progression of tuberculosis. Front Microbiol. 2022;13: 1020542. https://doi.org/10.3389/fmicb.2022.1020542
9. Chen YT, Wong LL, Liew OW, Richards AM. Heart failure with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF): The diagnostic value of circulating MicroRNAs. Cells. 2019;8(12):1651. https://doi.org/10.3390/cells8121651
10. Aonuma T, Moukette B, Kawaguchi S, Barupala NP, Sepúlveda MN, Frick K, et al. MiR‑150 attenuates maladaptive cardiac remodeling mediated by long noncoding RNA MIAT and directly represses profibrotic Hoxa4. Circ Heart Fail. 2022;15(4): e008686. https://doi.org/10.1161/CIRCHEARTFAILURE.121.008686
11. Zhou Q, Luo L, Wang X, Li X. Relationship between single nucleotide polymorphisms in the 3’UTR of amyloid precursor protein and risk of Alzheimer’s disease and its mechanism. Biosci Rep. 2019;39(5): BSR20182485. https://doi.org/10.1042/BSR20182485
12. Lozano-Velasco E, Inácio JM, Sousa I, Guimarães AR, Franco D, Moura G, et al. miRNAs in heart development and disease. Int J Mol Sci. 2024;25(3):1673. https://doi.org/10.3390/ijms25031673
13. Siasos G, Bletsa E, Stampouloglou PK, Oikonomou E, Tsigkou V, Paschou SA, et al. MicroRNAs in cardiovascular disease. Hellenic J Cardiol. 2020;61(3):165–173. https://doi.org/10.1016/j.hjc.2020.03.003
14. Mohri T, Nakajima M, Takagi S. MicroRNA regulates human vitamin D receptor. Int J Cancer. 2009;125(6):1328–33. https://doi.org/doi:10.1002/ijc.24459
15. Lisse TS, Adams JS, Hewison M. Vitamin D and MicroRNAs in bone. Crit Rev Eukaryot Gene Expr. 2013;23(3):195–214. https://doi.org/10.1615/critreveukaryotgeneexpr.2013007147
16. Belyaeva OD, Du J, Ionova ZhI, Karonova TL, Polunicheva EV, Miroshnikova VV, et al. The severity of coronary artery defeat in coronary heart disease patients with different variants of the vitamin D receptor gene and the level of vitamin D sufficiency. The Scientific Notes of Pavlov University. 2022;29(2):41–51. (In Russ.) https://doi.org/10.24884/1607-4181-2022-29-2-41-51
17. Rebrova OYu. Statistical analysis of medical data. Application of the STATISTICA application package. Moscow: MediaSfera, 2000. 312 p. (In Russ.)
18. Kirillova GN, Nikitina SYu, Kharkova TL, Chumarina VZh, Smelov PA, Ageeva LI, et al. Healthcare in Russia. 2021. Moscow: Stat.sb./Rosstat, 2021. 171 p. (In Russ.)
19. McPherson R, Tybjaerg-Hansen A. Genetics of coronary artery disease. Circ Res. 2016;118(4):564–578. https://doi.org/10.1161/CIRCRESAHA.115.306566
20. Abouzid M, Kruszyna M, Burchardt P, Kruszyna Ł, Główka FK, Karaźniewicz-Łada M. Vitamin D receptor gene polymorphism and vitamin D status in population of patients with cardiovascular disease — a preliminary study. Nutrients. 2021;13(9):3117. https://doi.org/10.3390/nu13093117
21. 21 Tabaei S, Motallebnezhad M, Tabaee SS. Vitamin D receptor (VDR) gene polymorphisms and risk of coronary artery disease (CAD): systematic review and meta-analysis. Biochem Genet. 2021;59(4):813–836. https://doi.org/10.1007/s10528–021–10038‑x
22. He L, Wang M. Association of vitamin D receptor — a gene polymorphisms with coronary heart disease in Han Chinese. Int J Clin Exp Med. 2015;8(4):6224–9.
23. Lu S, Guo S, Hu F, Guo Y, Yan L, Ma W, et al. The associations between the polymorphisms of vitamin D receptor and coronary artery disease: a systematic review and meta-analysis. Medicine (Baltimore). 2016;95(21): e3467. https://doi.org/10.1097/MD.0000000000003467
24. Karam ZM, Yari A, Najmadini A, Khorasani NN, Attari R, Jafarinejad-Farsangi S, et al. Association of the ESR1 (rs9340799), OLR1 (rs3736234), LIPC (rs2070895), VDR (rs2228570), and CETP (rs708272) polymorphisms with risk of coronary artery disease in Iranian patients. J Clin Lab Anal. 2024;38(6): e25026. https://doi.org/10.1002/jcla.25026
25. Raljević D, Peršić V, Markova-Car E, Cindrić L, Miškulin R, Žuvić M, Kraljević Pavelić S. Study of vitamin D receptor gene polymorphisms in a cohort of myocardial infarction patients with coronary artery disease. BMC Cardiovasc Disord. 2021;21(1):188. https://doi.org/10.1186/s12872–021–01959‑x
26. Fronczek M, Strzelczyk JK, Osadnik T, Biernacki K, Ostrowska Z. VDR gene polymorphisms in healthy individuals with family history of premature coronary artery disease. Dis Markers. 2021;2021:8832478. https://doi.org/10.1155/2021/8832478
27. Akhlaghi B, Firouzabadi N, Foroughinia F, Nikparvar M, Dehghani P. Impact of vitamin D receptor gene polymorphisms (TaqI and BsmI) on the incidence and severity of coronary artery disease: a report from southern Iran. BMC Cardiovasc Disord. 2023;23(1):113. https://doi.org/10.1186/s12872-023-03155-5
28. Hossein-Nezhad A, Holick MF. Vitamin D for health: a global perspective. Mayo Clin Proc. 2013;88(7):720–55. https://doi.org/10.1016/j.mayocp.2013.05.011
29. Torres-Paz YE, Gamboa R, Fuentevilla- Álvarez G, Soto ME, González-Moyotl N, Martínez-Alvarado R, et al. Overexpression of microRNA‑21–5p and microRNA‑221-5p in monocytes increases the risk of developing coronary artery disease. Int J Mol Sci. 2023;24(10):8641. https://doi.org/10.3390/ijms24108641
30. Nappi F, Avtaar Singh SS, Jitendra V, Alzamil A, Schoell T. The roles of microRNAs in the cardiovascular system. Int J Mol Sci. 2023;24(18):14277. https://doi.org/10.3390/ijms241814277
31. Holland A, Enrick M, Diaz A, Yin L. Is miR‑21 A therapeutic target in cardiovascular disease? Int J Drug Discov Pharm. 2023;2(1):26–36. https://doi.org/10.53941/ijddp.0201003
32. Mayr M, Zampetaki A, Willeit P, Willeit J, Kiechl S. MicroRNAs within the continuum of postgenomics biomarker discovery. Arterioscler Thromb Vasc Biol. 2013;33(2):206–14. https://doi.org/10.1161/ATVBAHA.112.300141
33. Wang D, Deuse T, Stubbendorff M, Chernogubova E, Erben RG, Eken SM, et al. Local MicroRNA modulation using a novel anti-mir‑21‑eluting stent effectively prevents experimental in-stent restenosis. Arterioscler Thromb Vasc Biol. 2015;35(9):1945–53. https://doi.org/10.1161/ATVBAHA.115.305597
34. Alieva AM, Teplova NV, Reznik EV, Baikova IE, Akhmedova MF, Butenko AV, et al. Current insights into the role of miRNA‑125 in cardiovascular disease: potential biological markers and therapeutic targets. Russian Medicine. 2023;29(4):311–324. (In Russ.) https://doi.org/10.17816/medjrf112141
35. Zhaolin Z, Jiaojiao C, Peng W, Yami L, Tingting Z, Jun T, et al. OxLDL induces vascular endothelial cell pyroptosis through miR‑125a‑5p/TET2 pathway. J Cell Physiol. 2019;234(5):7475–7491. https://doi.org/10.1002/jcp.27509
36. Jaguszewski M, Osipova J, Ghadri JR, Napp LC, Widera C, Franke J, et al. A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction. Eur Heart J. 2014;35(15):999–1006. https://doi.org/10.1093/eurheartj/eht392
37. Gomá M, et al. MiR‑125b downregulates macrophage scavenger receptor type B1 and reverse cholesterol transport. Biomed Pharmacother. 2022;146:112596. https://doi.org/10.1016/j.biopha.2021.112596
38. Vigili de Kreutzenberg S, Giannella A, Ceolotto G. A miR‑125/Sirtuin‑7 pathway drives the pro-calcific potential of myeloid cells in diabetic vascular disease. Diabetologia. 2022;65(9): 1555–1568. https://doi.org/10.1007/s00125-022-05733-2
39. Gager GM, Eyileten C, Postula M. association between the expression of MicroRNA‑125b and survival in patients with acute coronary syndrome and coronary multivessel disease. J. Front Cardiovasc Med. 2022;8(9):948006. https://doi.org/10.3389/fcvm.2022.948006
40. Lv F, Liu L, Feng Q, Yang X. Long non-coding RNA MALAT1 and its target microRNA‑125b associate with disease risk, severity, and major adverse cardiovascular event of coronary heart disease. J Clin Lab Anal. 2021;35(4):e23593. https://doi.org/10.1002/jcla.23593
41. Zhu Y, Zhu Y, Liu Y, Liu Y, Chen X. Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 correlates with microRNA‑125b/microRNA‑146a/microRNA‑203 and predicts 2‑year restenosis risk in coronary heart disease patients. Biomark Med. 2021;15(4):257–271. https://doi.org/10.2217/bmm‑2020-0715
42. Saadatian Z, Mansoori Y, Nariman-Saleh-Fam L, Daraei A, Vahed SZ, Navid S, et al. Peripheral blood mononuclear cells expression of miR‑200c, miR‑125b, miR‑27b, miR‑203, and miR‑155 in patients with significant or insignificant coronary artery stenosis. Sci Rep. 2023;13(1):18438. https://doi.org/10.1038/s41598-023-45146-8
43. Varga ZV, Zvara A, Faragó N, Kocsis GF, Pipicz M, Gáspár R, et al. MicroRNAs associated with ischemia-reperfusion injury and cardioprotection by ischemic pre- and postconditioning: protectomiRs. Am J Physiol Heart Circ Physiol. 2014;307(2):216–227. https://doi.org/10.1152/ajpheart.00812.2013
44. Xiaochuan B, Qianfeng J, Min X, Xiao L. RASSF1 promotes cardiomyocyte apoptosis after acute myocardial infarction and is regulated by miR‑125b. J Cell Biochem. 2020;121(1):489–496. https://doi.org/10.1002/jcb.29236
45. Amin MMJ, Trevelyan CJ, Turner NA. MicroRNA‑214 in health and disease. Cells. 2021;10(12):3274. https://doi.org/10.3390/cells10123274
46. Eguchi S, Takefuji M, Sakaguchi T, Ishihama S, Mori Y, Tsuda T, et al. Cardiomyocytes capture stem cell-derived, antiapoptotic microRNA‑214 via clathrin-mediated endocytosis in acute myocardial infarction. J Biol Chem. 2019;294(31):11665–11674. https://doi.org/10.1074/jbc.RA119.007537
47. Стабильная ишемическая болезнь сердца: Клинические рекомендации 2020 (04.09.2022). Утверждены Минздравом РФ. https://scardio.ru/content/Guidelines/2020/Clinic_rekom_IBSunlocked.pdf
48. Stable Ischemic Heart Disease: Clinical Guidelines 2020 (04.09.2022). Approved by the Ministry of Health of the Russian Federation. (In Russ.) https://scardio.ru/content/Guidelines/2020/Clinic_rekom_IBS-unlocked.pdf
49. Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al; ESC National Cardiac Societies; ESC Scientific Document Group. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34): 3227–3337. https://doi.org/10.1093/eurheartj/ehab484
Supplementary files
Review
For citations:
Ionova Z.I., Berkovich O.A., Belyaeva O.D., Zaraisky M.I. Variants of the vitamin D receptor gene and the expression of microRNA‑21, microRNA‑125a, microRNA‑125b and microRNA‑214 in coronary heart disease. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2025;31(3):224-237. (In Russ.) https://doi.org/10.18705/1607-419X-2025-2513. EDN: JWMLNF