Laboratory biomarkers — predictors of the prognosis of ischemic stroke outcomes in patients with type 2 diabetes mellitus
https://doi.org/10.18705/1607-419X-2025-2483
EDN: XIYRTK
Abstract
Background. Ischemic stroke (IS) in patients with type 2 diabetes mellitus (DM 2) is characterized by a more severe course and worse functional outcomes compared to individuals without diabetes, which increases the number of patients disabled by the end of hospitalization. Predicting the outcome of stroke upon admission to hospital can help optimize treatment, diagnostic and rehabilitation measures and improve the quality of treatment. The use of laboratory biomarkers (LBM) in predicting the outcome of IS is a promising area of modern medicine. Objective. To create a prognostic model for the outcome of non-lacunar ischemic stroke (NlIS) in patients with DM 2 based on the LBM study. Design and methods. We studied the serum concentrations of 78 LBM in 55 patients with DM 2 admitted to the hospital due to the development of NlI S. Machine learning (ML) was used to search for a relationship between LBM levels at the time of patient admission to hospital and outcomes of the acute period of stroke. Results. We established the threshold concentrations of interleukin (IL)-13 (3,605 pg/mL), IL-6 (1,47 pg/mL), apolipoprotein CII (1516000000,0 ng/mL), soluble IL-4 receptor (581,912 pg/mL) and syndecan 4 (26,785 ng/mL) that determine the functional outcome of IS, as well as the threshold values of the alpha subunit of the soluble IL-2 receptor (480,802 pg/mL), IL-21 (1,024 pg/mL), protein 15 containing a disintegrin and metalloproteinase domain (3076,733 ng/mL), soluble vascular endothelial growth factor receptor 2 (16,300,003 pg/mL) that determine the neurological outcome of IS in patients with DM 2. Models for predicting the functional and neurological outcome of IS in patients with DM 2 are proposed. Conclusion. LBM research can be a useful auxiliary tool for predicting the outcomes of NlIS in patients with DM 2, which provides opportunities for implementing a personalized approach to the management of these patients and improving the quality of their treatment.
Keywords
About the Authors
Olga V. PetukhovaRussian Federation
Olga V. Petukhova, MD, Neurologist,
Saint-Petersburg, Sestroretsk.
Stanislav N. Yanishevsky
Russian Federation
Stanislav N. Yanishevsky, MD, PhD, DSc, Head, Research Laboratory of Neurology and Neurorehabilitation, Professor of the Department of Neurology,
Saint-Petersburg.
Sergey G. Scherbak
Russian Federation
Sergey G. Scherbak, MD, PhD, DSc, Professor, Chief Physician; Head of Postgraduate Medical Education Chair, Medical Faculty,
Saint-Petersburg.
Andrey M. Sarana
Russian Federation
Andrey M. Sarana, MD, PhD, Associated Professor, Postgraduate Medical Education Chair, Director, Medical Institute,
Saint-Petersburg.
Anna Yu. Asinovskaya
Russian Federation
Anna Yu. Asinovskaya, MD, PhD, Physician, Deputy Chief Physician for Science; Senior Researcher, Associated Professor, Postgraduate Medical Education Department, Medical Faculty,
Saint-Petersburg.
Stanislav V. Makarenko
Russian Federation
Stanislav V. Makarenko, Head, City Organizational and Methodological Department for Medical Rehabilitation; Assistant, Department of Postgraduate Medical Education, Medical Institute,
Saint-Petersburg.
Oleg S. Popov
Russian Federation
Oleg S. Popov, Specialist; Junior Researcher of Medical Faculty,
Saint-Petersburg.
Natalya N. Sushentseva
Russian Federation
Natalya N. Sushentseva, Head, Translational Biomedicine Laboratory,
Saint-Petersburg, Sestroretsk.
Svetlana V. Apalko
Russian Federation
Svetlana V. Apalko, PhD in Biology Sciences, Head, Research Department; Senior Researcher, Medical Faculty,
Saint-Petersburg.
References
1. Institute for Health Metrics and Evaluation (IHME). Global Burden of Disease 2021: Findings from the GBD 2021 Study. [Internet]. Seattle, WA: IHME, 2024 [cited 2024 May 16]. Available from: https://www.healthdata.org/research-analysis/diseases-injuries-risks/factsheets/2021-stroke-level-3-disease
2. Martin S, Aday A, Almarzooq Z, Anderson C, Arora P, Avery C, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation. 2024;149(19): e1164. https://doi.org/10.1161/CIR.0000000000001247
3. Zhang L, Li X, Wolfe C, O’Connell M, Wang Y. Diabetes as an independent risk factor for stroke recurrence in ischemic stroke patients: an updated meta-a nalysis. Neuroepidemiology. 2021;55(6):427–435. https://doi.org/10.1159/000519327
4. Echouffo-Tcheugui J, Xu H, Matsouaka R, Xian Y, Schwamm L, Smith E, et al. Diabetes and long-term outcomes of ischaemic stroke: findings from Get With The Guidelines-S troke. Eur Heart J. 2018;39(25):2376–2386. https://doi.org/10.1093/eurheartj/ehy036
5. Masrur S, Cox M, Bhatt D, Smith E, Ellrodt G, Fonarow G, et al. Association of acute and chronic hyperglycemia with acute ischemic stroke outcomes post-thrombolysis: findings from get with the guidelines-s troke. J Am Heart Assoc. 2015;4(10): e002193. https://doi.org/10.1161/JAHA.115.002193
6. Chaturvedi P, Singh A, Tiwari V, Thacker A. Diabetes mellitus type 2 impedes functional recovery, neuroplasticity and quality of life after stroke. J Family Med Prim Care. 2020;9(2):1035–1041. https://doi.org/10.4103/jfmpc.jfmpc_884_19
7. Hsieh M, Hsieh C, Yang T, Sung S, Hsieh Y, Lee C, et al. Associations of diabetes status and glucose measures with outcomes after endovascular therapy in patients with acute ischemic stroke: an analysis of the nationwide TREAT-AIS registry. Front Neurol. 2024;15:1351150. https://doi.org/10.3389/fneur.2024.1351150
8. Lai Y, Hanneman S, Casarez R, Wang J, McCullough L. Blood biomarkers for physical recovery in ischemic stroke: a systematic review. Am J Transl Res. 2019;11(8):4603–4613.
9. Fast L, Temuulen U, Villringer K, Kufner A, Ali H, Siebert E, et al. Machine learning-b ased prediction of clinical outcomes after first-ever ischemic stroke. Front Neurol. 2023;14:1114360. https://doi.org/10.3389/fneur.2023.1114360
10. Cui Y, Wang X, Zhao Y, Chen S, Sheng B, Wang L, et al. Association of serum biomarkers with early neurologic improvement after intravenous thrombolysis in ischemic stroke. PLOS One. 2022;17(10):e0277020. https://doi.org/10.1371/journal.pone.0277020
11. Kamtchum-Tatuene J, Jickling G. Blood biomarkers for stroke diagnosis and management. Neuromolecular Med. 2019;21(4):344–368. https://doi.org/10.1007/s12017-019-08530-0
12. Lehmann A, Alfieri D, de Araújo M, Trevisani E, Nagao M, Pesente F, et al. Immune-inflammatory, coagulation, adhesion, and imaging biomarkers combined in machine learning models improve the prediction of death 1 year after ischemic stroke. Clin Exp Med. 2022;22(1):111–123. https://doi.org/10.1007/s10238-021-00732-w
13. R Core Team. (2024). R: a language and environment for statistical computing (4.3.3). R Foundation for Statistical Computing [Internet]. Available from: https://www.r-project.org/
14. Van Rossum G, Drake F. Python 3 reference manual. CreateSpace, Scotts Valley, CA. 2009.
15. Stekhoven D, Bühlmann P. MissForest-non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28(1):112–8. https://doi.org/10.1093/bioinformatics/btr597
16. Gkantzios A, Kokkotis C, Tsiptsios D, Moustakidis S, Gkartzonika E, Avramidis T, et al. Evaluation of blood biomarkers and parameters for the prediction of stroke survivors’ functional outcome upon discharge utilizing explainable machine learning. Diagnostics (Basel). 2023;13(3):532. https://doi.org/10.3390/diagnostics13030532
17. Peng D, Liu Y, Chen W, Hu H, Luo Y. Epidermal growth factor alleviates cerebral ischemia- induced brain injury by regulating expression of neutrophil gelatinase- associated lipocalin. Biochem Biophys Res Commun. 2020;524(4):963–969. https://doi.org/10.1016/j.bbrc.2020.02.025
18. Geiseler S, Morland C. The Janus face of VEGF in stroke. Int J Mol Sci. 2018;19(5):1362. https://doi.org/10.3390/ijms19051362
19. Bogoslovsky T, Chaudhry A, Latour L, Maric D, Luby M, Spatz M, et al. Endothelial progenitor cells correlate with lesion volume and growth in acute stroke. Neurology. 2010;75(23):2059–62. https://doi.org/10.1212/WNL.0b013e318200d741
20. Camps- Renom P, Jiménez- Xarrié E, Soler M, Puig N, Aguilera-Simón A, Marín R, et al. Endothelial progenitor cells count after acute ischemic stroke predicts functional outcome in patients with carotid atherosclerosis. J Stroke Cerebrovasc Dis. 2021;30(12):106144. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106144
21. Decano J, Moran A, Giordano N, Ruiz-Opazo N, Herrera V. Analysis of CD45- [CD34+/KDR+] endothelial progenitor cells as juvenile protective factors in a rat model of ischemic- hemorrhagic stroke. PLOS One. 2013;8(1):e55222. https://doi.org/10.1371/journal.pone.0055222
22. Hu Y, Huang S, Shen T, Wang R, Geng M, Wang Y, et al. Prognostic significance of plasma VEGFA and VEGFR2 in acute ischemic stroke — a prospective cohort study. Mol Neurobiol. 2024;61(9):6341–6353. https://doi.org/10.1007/s12035-024-03973-4
23. Silbernagel G, Genser B, Drechsler C, Scharnagl H, Grammer T, Stojakovic T, et al. HDL cholesterol, apolipoproteins, and cardiovascular risk in hemodialysis patients. J Am Soc Nephrol. 2015;26(2):484–92. https://doi.org/10.1681/ASN.2013080816
24. Molgora M, Supino D, Mantovani A, Garlanda C. Tuning inflammation and immunity by the negative regulators IL-1R2 and IL-1R8. Immunol Rev. 2018;281(1):233–247. https://doi. org/10.1111/imr.12609
25. Zhu H, Hu S, Li Y, Sun Y, Xiong X, Hu X, et al. Interleukins and ischemic stroke. Front. Immunol. 2022;13:828447. https://doi.org/10.3389/fimmu.2022.828447
26. Bell E, Larson N, Decker P, Pankow J, Tsai M, Hanson N, et al. Hepatocyte growth factor is positively associated with risk of stroke: The MESA (Multi-E thnic Study of Atherosclerosis). Stroke. 2016;47(11):2689–2694. https://doi.org/10.1161/STROKEAHA.116.014172
27. Zhu Z, Xu T, Guo D, Huangfu X, Zhong C, Yang J, et al. Serum hepatocyte growth factor is probably associated with 3-month prognosis of acute ischemic stroke. Stroke. 2018;49(2):377–383. https://doi.org/10.1161/STROKEAHA.117.019476
28. Lipphardt M, Song J, Ratliff B, Dihazi H, Müller G, Goligorsky M. Endothelial dysfunction is a superinducer of syndecan-4: fibrogenic role of its ectodomain. Am J Physiol Heart Circ Physiol. 2018;314(3):H484–H496. https://doi.org/10.1152/ajpheart.00548.2017
29. Yoshimoto T, Saito S, Omae K, Hattori Y, Fukuma K, Kitamura K, et al. Study protocol for a randomized, double- blind, placebo-c ontrolled, phase-II trial: AdrenoMedullin for ischemic stroke study. J Stroke Cerebrovasc Dis. 2021;30(6):105761. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105761
30. Wu C, Borné Y, Gao R, López Rodriguez M, Roell W, Wilson J, et al. Elevated circulating follistatin associates with an increased risk of type 2 diabetes. Nat Commun. 2021;12(1):6486. https://doi.org/10.1038/s41467-021-26536-w
31. Wong R, Lénárt N, Hill L, Toms L, Coutts G, Martinecz B, et al. Interleukin-1 mediates ischaemic brain injury via distinct actions on endothelial cells and cholinergic neurons. Brain Behav. Immun. 2019;76:126–138. https://doi.org/10.1016/j.bbi.2018.11.012
32. Zhou P. Emerging mechanisms and applications of lowdose IL-2 therapy in autoimmunity. Cytokine Growth Factor Rev. 2022;67: 80–88. https://doi.org/10.1016/j.cytogfr.2022.06.003
33. Damoiseaux J. The IL-2 — IL-2 receptor pathway in health and disease: The role of the soluble IL-2 receptor. Clin Immunol. 2020;218:108515. https://doi.org/10.1016/j.clim.2020.108515
34. Huang X, Ye Q, Zhu Z, Chen W, Chen Y, Li J, et al. Polymorphism of IL6 receptor gene is associated with ischaemic stroke in patients with metabolic syndrome. Brain Res. 2020;1728:146594. https://doi.org/10.1016/j.brainres.2019.146594
35. Chen A, Fang Z, Chen X, Yang S, Zhou Y, Mao L, et al. Microglia- derived TNF-α mediates endothelial necroptosis aggravating blood brain-b arrier disruption after ischemic stroke. Cell Death Dis. 2019;10(7):487. https://doi.org/10.1038/s41419-019-1716-9
36. Gao X, Zhang Z, Han G. MiR-29a-3p enhances the viability of rat neuronal cells that injured by oxygen-g lucose deprivation/ reoxygenation treatment through targeting TNFRSF1A and regulating NF-κB signaling pathway. J Stroke Cerebrovasc Dis. 2020;29(11):105210. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105210
37. Hansen R, Laursen C, Nawaz N, Madsen J, Nielsen H, Kruuse C, et al. Leukocyte TNFR1 and TNFR2 expression contributes to the peripheral immune response in cases with ischemic stroke. Cells. 2021;10(4):861. https://doi.org/10.3390/cells10040861
38. Xue Y, Zeng X, Tu W, Zhao J. Tumor necrosis factor-α: the next marker of stroke. Dis Markers. 2022;2022:2395269. https://doi.org/10.1155/2022/2395269
39. Chu M, Wen L, Jiang D, Liu L, Nan H, Yue A, et al. Peripheral inflammation in behavioural variant frontotemporal dementia: associations with central degeneration and clinical measures. J Neuroinflammation. 2023;20(1):65. https://doi.org/10.1186/s12974-023-02746-5
40. Fan Q, Zhou J, Wang Y, Xi T, Ma H, Wang Z, Xiao W, Liu Q. Chip-based serum proteomics approach to reveal the potential protein markers in the sub-acute stroke patients receiving the treatment of Ginkgo Diterpene Lactone Meglumine Injection. J Ethnopharmacol. 2020;260:112964. https://doi.org/10.1016/j.jep.2020.112964
41. Alrafiah A, Alofi E, Almohaya Y, Hamami A, Qadah T, Almaghrabi S, et al. Angiogenesis biomarkers in ischemic stroke patients. J Inflamm Res. 2021 Sep 22;14:4893–4900. https://doi.org/10.2147/JIR.S331868
42. Melincovici C, Boşca A, Şuşman S, Mărginean M, Mihu C, Istrate M, et al. Vascular endothelial growth factor (VEGF) — key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2):455–467.
43. Esposito E, Ahn B, Shi J, Nakamura Y, Park J, Mandeville E, et al. Brain-to-cervical lymph node signaling after stroke. Nat Commun. 2019;10(1):5306. https://doi.org/10.1038/s41467-019-13324-w
44. Yanev P, Poinsatte K, Hominick D, Khurana N, Zuurbier K, Berndt M, et al. Impaired meningeal lymphatic vessel development worsens stroke outcome. J Cereb Blood Flow Metab. 2020;40(2):263–275. https://doi.org/10.1177/0271678X18822921
45. Tang H, Zhang Z, Li Z, Lin J, Fang D. Association of leptin receptor gene polymorphisms with genetic susceptibility to ischemic stroke. J Stroke Cerebrovasc Dis. 2015;24(9):2128–33. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.05.036
46. Abd El-A ziz T, Mohamed R, Mohamed R, Pasha H. Leptin, leptin gene and leptin receptor gene polymorphism in heart failure with preserved ejection fraction. Heart Vessels. 2012;27(3):271–9. https://doi.org/10.1007/s00380-011-0152-2
47. Bruno A, Conus S, Schmid I, Simon H. Apoptotic pathways are inhibited by leptin receptor activation in neutrophils. J Immunol. 2005;174(12):8090–6. https://doi.org/10.4049/jimmunol.174.12.8090
48. Tan Z, Qin S, Yuan Y, Hu X, Huang X, Liu H, et al. NOTCH1 signaling regulates the latent neurogenic program in adult reactive astrocytes after spinal cord injury. Theranostics. 2022;12(10):4548–4563. https://doi.org/10.7150/thno.71378
49. Tanigaki K, Nogaki F, Takahashi J, Tashiro K, Kurooka H, Honjo T. Notch1 and Notch3 instructively restrict bFGF-respon- sive multipotent neural progenitor cells to an astroglial fate. Neuron. 2001;29(1):45–55. https://doi.org/10.1016/s0896-6273(01)00179-9
50. Yoon H, Triplet E, Simon W, Choi C, Kleppe L, De Vita E, et al. Blocking Kallikrein 6 promotes developmental myelination. Glia. 2022;70(3):430–450. https://doi.org/10.1002/glia.24100
51. Patra K, Soosaipillai A, Sando S, Lauridsen C, Berge G, Møller I, et al. Assessment of kallikrein 6 as a cross- sectional and longitudinal biomarker for Alzheimer’s disease. Alzheimers Res Ther. 2018;10(1):9. https://doi.org/10.1186/s13195-018-0336-4
52. Chen G, Lin T, Wu M, Cai G, Wu C, Ding Q, et al. Causal association of cytokines and growth factors with stroke and its subtypes: a mendelian randomization study. Mol Neurobiol. 2024;61(6):3212–3222. https://doi.org/10.1007/s12035-023-03752-7
53. Chen D, Li J, Huang Y, Wei P, Miao W, Yang Y, et al. Interleukin 13 promotes long-term recovery after ischemic stroke by inhibiting the activation of STAT3. J Neuroinflammation. 2022;19(1):112. https://doi.org/10.1186/s12974-022-02471-5
54. Kolosowska N, Keuters M, Wojciechowski S, Keksa-Goldsteine V, Laine M, Malm T, et al. Peripheral administration of IL-13 induces anti-inflammatory microglial/macrophage responses and provides neuroprotection in ischemic stroke. Neurotherapeutics. 2019;16(4):1304–1319. https://doi.org/10.1007/s13311-019-00761-0
55. Li X, Lin S, Chen X, Huang W, Li Q, Zhang H, et al. The prognostic value of serum cytokines in patients with acute ischemic stroke. Aging Dis. 2019;10(3):544–556. https://doi.org/10.14336/AD.2018.0820
56. Wolska A, Dunbar R, Freeman L, Ueda M, Amar M, Sviridov D, et al. Apolipoprotein C–II: new findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis. 2017;267:49–60. https://doi.org/10.1016/j.atherosclerosis.2017.10.025
57. Gao M, Yang C, Wang X, Guo M, Yang L, Gao S, et al. ApoC2 deficiency elicits severe hypertriglyceridemia and spontaneous atherosclerosis: a rodent model rescued from neonatal death. Metab. Clin. Exp. 2020;109:154296. https://doi.org/10.1016/j.metabol.2020.154296
58. Rayasam A, Kijak J, Kissel L, Choi Y, Kim T, Hsu M, et al. CXCL13 expressed on inflamed cerebral blood vessels recruit IL-21 producing TFH cells to damage neurons following stroke. J Neuroinflammation. 2022;19(1):125. https://doi.org/10.1186/s12974-022-02490-2
59. Clarkson B, Ling C, Shi Y, Harris M, Rayasam A, Sun D, et al. T cell-derived interleukin (IL)-21 promotes brain injury following stroke in mice. J Exp Med. 2014;211(4):595–604. https://doi.org/10.1084/jem.20131377
60. Aujla P, Hu M, Hartley B, Kranrod J, Viveiros A, Kilic T, et al. Loss of ADAM15 exacerbates transition to decompensated myocardial hypertrophy and dilation through activation of the calcineurin pathway. Hypertension. 2023;80(1):97–110. https://doi.org/10.1161/HYPERTENSIONAHA.122.19411
61. Chute M, Aujla P, Li Y, Jana S, Zhabyeyev P, Rasmuson J, et al. ADAM15 is required for optimal collagen cross- linking and scar formation following myocardial infarction. Matrix Biol. 2022;105:127–143. https://doi.org/10.1016/j.matbio.2021.12.002
62. Hsia H, Tüshaus J, Brummer T, Zheng Y, Scilabra S, Lichtenthaler S. Functions of ‘A disintegrin and metalloproteases (ADAMs)’ in the mammalian nervous system. Cell Mol Life Sci. 2019;76(16):3055–3081. https://doi.org/10.1007/s00018-019-03173-7
Review
For citations:
Petukhova O.V., Yanishevsky S.N., Scherbak S.G., Sarana A.M., Asinovskaya A.Yu., Makarenko S.V., Popov O.S., Sushentseva N.N., Apalko S.V. Laboratory biomarkers — predictors of the prognosis of ischemic stroke outcomes in patients with type 2 diabetes mellitus. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2025;31(1):19-33. (In Russ.) https://doi.org/10.18705/1607-419X-2025-2483. EDN: XIYRTK