Preview

Артериальная гипертензия

Расширенный поиск

Интервенционные подходы к лечению артериальной гипертензии

https://doi.org/10.18705/1607-419X-2015-21-5-450-458

Аннотация

Несмотря на широкие возможности медикаментозной терапии, необходим поиск новых подходов к лечению артериальной гипертензии (АГ), прежде всего ее резистентных форм. В кратком обзоре представлены последние данные по интервенционным методам лечения АГ. При этом основной акцент сделан не на самом изученном и активно обсуждаемом подходе — радиочастотной аблации симпатических почечных нервов (ренальной денервации), а на методах, находящихся на ранних стадиях разработки: стимуляция каротидных барорецепторов, аблация каротидного тельца, артериовенозная фистула, нейрососудистая декомпрессия, стимуляция спинного и головного мозга. Большинство данных методов влияют на уровень артериального давления опосредованно через модуляцию активности вегетативной нервной системы. Многие из них (например, ренальная денервация и стимуляция каротидных барорецепторов) являются современными модификациями применявшихся еще в прошлом веке методов лечения, в то время как другие (например, стимуляция глубинных структур головного мозга и спинного мозга, артериовенозная фистула) разрабатывались для применения при других заболеваниях. Все эти подходы пока еще очень далеки от широкого применения в клинической практике, требуют дальнейшего изучения эффективности и безопасности в рамках рандомизированных клинических исследований, технической оптимизации и выбора наиболее подходящей популяции или критериев и предикторов эффективности.

Об авторах

Н. Э. Звартау
ФГБУ «СЗФМИЦ им. В.А. Алмазова» Минздрава России
Россия

кандидат медицинских наук, старший научный сотрудник научно-исследовательской лаборатории патогенеза и терапии артериальной гипертензии научно-исследовательского отдела артериальной гипертензии,

ул. Аккуратова, д. 2, Санкт-Петербург, 197341



А. О. Конради
ФГБУ «СЗФМИЦ им. В.А. Алмазова» Минздрава России
Россия

доктор медицинских наук, профессор, заведующая научно-исследовательским отделом артериальной гипертензии, заместитель генерального директора по научной работе,

ул. Аккуратова, д. 2, Санкт-Петербург, 197341



Список литературы

1. Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M et al. Task Force Members. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31(7):1281–1357. doi: 10.1097/01.hjh.0000431740.32696.cc

2. Wolf-Maier K, Cooper RS, Kramer H, Banegas JR, Giampaoli S, Joffres MR et al. Hypertension treatment and control in 5 European countries, Canada, and the United States. Hypertension. 2004;43(1):10–17.

3. Egan BM, Zhao Y, Axon RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1988–2008. J Am Med Assoc. 2010;303(20):2043–50.

4. Ceral J, Habrdova V, Vorisek V, Bima M, Pelouch R, Solar M. Difficult to control arterial hypertension or uncooperative patients? The assessment of serum antihypertensive drug levels to differentiate non-responsiveness from non-adherence to recommended therapy. Hypertens Res. 2011;34(1):87–90. doi:10.1038/hr.2010.183.

5. Jung O, Gechter JL, Wunder C, Paulke A, Bartel C, Geiger H et al. Resistant hypertension? Assessment of adherence by toxicological urine analysis. J Hypertens. 2013;31(4):766–774. doi: 10.1097/HJH.0b013e32835e2286.

6. Brinker S, Pandey A, Ayers C, Price A, Raheja P, Arbique D et al. Therapeutic drug monitoring facilitates blood pressure control in resistant hypertension. J Am Coll Cardiol. 2014;63 (8):834–835. doi: 10.1016/j.jacc.2013.10.067

7. Tomaszewski M, White C, Patel P, Masca N, Damani R, Hepworth J et al. High rates of nonadherence to antihypertensive treatment revealed by high-performance liquid chromatographytandem mass spectrometry (HP LC–MS/MS) urine analysis. Heart. 2014;100(11):855–861. doi: 10.1136/heartjnl‑2013–305063

8. Sim JJ, Bhandari SK, Shi J, Liu IL, Calhoun DA, McGlynn EA et al. Characteristics of resistant hypertension in a large, ethnically diverse hypertension population of an integrated health system. Mayo Clin Proc. 2013;88(10):1099–1107. doi: 10.1016/j.mayocp.2013.06.017

9. Calhoun DA, Booth JN, Oparil S, Irvin MR, Shimbo D, Lackland DT et al. Refractory hypertension: determination of prevalence, risk factors, and comorbidities in a large, populationbased cohort. Hypertension. 2014;63(3):451–458. doi: 10.1161/HYPERTENSIONAHA.113.02026

10. Laurent S, Schlaich M, Esler M. New drugs, procedures, and devices for hypertension. Lancet. 2012;380 (9841):591–600. doi: 10.1016/S0140–6736(12)60825–3

11. Lobo M, de Belder M, Cleveland T, Collier D, Dasgupta I, Deanfield J et al. Joint UK societies’ 2014 consensus statement on renal denervation for resistant hypertension. Heart. 2015;101 (1):10–16. doi:10.1136/heartjnl‑2014–307029

12. Звартау Н.Э., Зверев Д.А., Конради А.О. Ренальная денервация при резистентной артериальной гипертензии — быть или не быть? Артериальная гипертензия. 2014;20(2):155–156. doi: http://dx.doi.org/10.18705/1607–419x-2014–20–2-125–126. [Zvartau NE, Zverev DA, Konradi AO. Renal denervation in resistant hypertension — to be or not to be? Arterial’naya Gipertenziya = Arterial Hypertension. 2014;20(2):155–156. doi: http://dx.doi.org/10.18705/1607–419x-2014–20–2-125–126. In Russia].

13. Thrasher TN. Unloading arterial baroreceptors causes neurogenic hypertension. Am J Physiol Regul Integr Comp Physiol. 2002;282(4): R1044‑R1053.

14. Scheffers IJ, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, Mohaupt MG et al. Novel baroreflex activation therapyin resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol. 2010;56 (15):1254–1258.

15. Alnima T, Scheffers I, De Leeuw PW, Winkens B, Jongen-Vancraybex H, Tordoir JH et al. Sustained acute voltagedependent blood pressure decrease with prolonged carotid baroreflex activation in therapy-resistant hypertension. J Hypertens. 2012;30 (8):1665–1670.

16. Bisognano JD, Bakris G, Nadim MK, Sanchez L, Kroon AA, Schafer J et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled rheos pivotal trial. J Am Coll Cardiol. 2011;58(7):765–773. doi: 10.1016/j.jacc.2011.06.008

17. Bakris GL, Nadim MK, Haller H, Lovett EG, Schafer JE, Bisognano JD. Baroreflex activation therapy provides durable benefit in patients with resistant hypertension: results of long-term follow-up in the Rheos Pivotal Trial. J Am Soc Hypertens. 2012;6 (2):152–158.

18. Hoppe UC, Brandt M–C, Wachter R, Beige J, Rump LC, Kroon AA et al. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. J Am Soc Hypertens. 2012;6(4):270–276.

19. Zhang J, Zhou S, Xu G. Carotid baroreceptor stimulation: a potential solution for resistant hypertension. Intervent Neurol. 2013;2(3):118–122. doi: 10.1159/000357167

20. Faul J, Schoors D, Brouwers S, Scott B, Jerrentrup A, Galvin J et al. Creation of an iliac arteriovenous shunt lowers blood pressure in chronic obstructive pulmonary disease patients with hypertension. J Vasc Surg. 2014;59(4):1078–1083. doi: 10.1016/j.jvs.2013.10.069

21. Rubattu S, Calvieri C, Pagliaro B, Volpe M. Atrial natriuretic peptide and regulation of vascular function in hypertension and heart failure: implications for novel therapeutic strategies. J Hypertens. 2013;31(6):1061–72.

22. Hainsworth R. Cardiovascular control from cardiac and pulmonary vascular receptors. Exp Physiol. 2014;99(2):312–9.

23. Sinski M, Lewandowski J, Przybylski J, Bidiuk J, Abramczyk P, Ciarka A et al. Tonic activity of carotid body chemoreceptors contributes to the increased sympathetic drive in essential hypertension. Hypertens Res. 2012;35(5):487–91.

24. Korsheed S, EldehniMT, John SG, Fluck RJ, McIntyreCW. Effects of arteriovenous fistula formation on arterial stiffness and cardiovascular performance and function. Nephrol Dial Transplant. 2011;26(10):3296–302.

25. Brouwers S, Droogmans S, Dolan E, Galvin J, Dupont A, Van Camp G et al. A prospective non-randomized open label multicenter study to evaluate the effect of an iliofemoral arteriovenous fistula on blood pressure in patients with therapyresistant hypertension. Eur Heart J. 2013;34: S654–5.

26. Lobo MD, Sobotka PA, Stanton A, Cockcroft JR, Sulke N, Dolan E et al. Central arteriovenous anastomosis for the treatment of patients with uncontrolled hypertension (the ROX CONTROL HTN study): a randomised controlled trial. Lancet. 2015;385 (9978):1634–41.

27. Tan ZY, Lu Y, Whiteis CA, Simms AE, Paton JF, Chapleau MW, Abboud FM. Chemoreceptor hypersensitivity, sympathetic excitation, and overexpression of ASIC and TASK channels before the onset of hypertension in SHR. Circ Res. 2010;106(3):536–545. doi: 10.1161/CIRCRESAHA.109.206946

28. Trzebski A, Tafil M, Zoltowski M, Przybylski J. Increased sensitivity of the arterial chemoreceptor drive in young men with mild hypertension. Cardiovasc Res. 1982;16(3):163–172.

29. Siński M, Lewandowski J, Przybylski J, Bidiuk J, Abramczyk P, Ciarka A et al. Tonic activity of carotid body chemoreceptors contributes to the increased sympathetic drive in essential hypertension. Hypertens Res. 2012;35(5):487–491. doi: 10.1038/hr.2011.209

30. Sinski M, Lewandowski J, Przybylski J, Zalewski P, Symonides B, Abramczyk P et al. Deactivation of carotid body chemoreceptors by hyperoxia decreases blood pressure in hypertensive patients. Hypertens Res. 2014;37(9):858–862. doi: 10.1038/hr.2014.91

31. Winter B, Whipp BJ. Immediate effects of bilateral carotid body resection on total respiratory resistance and compliance in humans. Adv ExpMed Biol. 2004;551:15–21.

32. Jannetta PJ, Segal R, Wolfson SK, Dujovny M, Semba A, Cook EE. Neurogenic hypertension: etiology and surgical treatment. II. Observationsin an experimental nonhuman primate model. Ann Surg. 1985;202(2):253–261.

33. Morimoto S, Sasaki S, Miki S, Kawa T, Itoh H, Nakata T et al. Pulsatile compression of the rostral ventrolateral medulla in hypertension. Hypertension. 1997;29(1Pt2):514–518.

34. Yamamoto I, Yamada S, Sato O. Microvascular decompression for hypertension — clinical and experimental study. Neurol Med Chir (Tokyo). 1991;31(1):1–6.

35. Geiger H, Naraghi R, Schobel HP, Frank H, Sterzel RB, Fahlbusch R. Decrease of blood pressure by ventrolateral medullary decompression in essential hypertension. Lancet. 1998;352 (9126):446–449.

36. Frank H, Heusser K, Geiger H, Fahlbusch R, Naraghi R, Schobel HP. Temporary reduction of blood pressure and sympathetic nerve activity in hypertensive patients after microvascular decompression. Stroke. 2009;40(1):47–51. doi: 10.1161/STROKEAHA.108.518670

37. Frank H, Schobel HP, Heusser K, Geiger H, Fahlbusch R, Naraghi R. Long-term results after microvascular decompression in essential hypertension. Stroke. 2001;32(12):2950–2955.

38. Nguyen JP, Nizard J, Keravel Y, Lefaucheur JP. Invasive brain stimulation for the treatment of neuropathic pain. Nat Rev Neurol. 2011;7(12):699–709.

39. Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks WJ et al. CSP 468 Study Group. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. J Am Med Assoc. 2009;301(1):63–73.

40. Basnayake SD, Hyam JA, Pereira EA, Schweder PM, Brittain JS, Aziz T et al. Identifying cardiovascular neurocircuitry involved in the exercise pressor reflex in humans using functional neurosurgery. J Appl Physiol. 2011;110(4):881–891.

41. Green AL, Wang S, Purvis S, Owen SL, Bain PG, Stein JF et al. Identifying cardiorespiratory neurocircuitry involved in central command during exercise in humans. J Physiol. 2007;578 (Pt2):605–612.

42. Thornton JM, Aziz T, Schlugman D, Paterson DJ. Electrical stimulation of the midbrain increases heart rate and arterial blood pressure in awake humans. J Physiol. 2002;539(Pt2):615–621.

43. Green AL, Wang S, Owen SL, Xie K, Liu X, Paterson DJ et al. Deep brain stimulation can regulate arterial blood pressure in awake humans. Neuroreport. 2005;16(16):1741–1745.

44. Carrive P, Bandler R. Control of extracranial and hind limb blood flow by the midbrain periaqueductal grey of the cat. Exp Brain Res. 1991;84(3):599–606.

45. Carrive P, Bandler R. Viscerotopic organization of neurons subserving hypotensive reactions within the midbrain periaqueductal grey: a correlative functional and anatomical study. Brain Res. 1991;541(2):206–215.

46. Green AL, Wang S, Bittar RG, Owen SL, Paterson DJ, Stein JF at al. Deep brain stimulation: a new treatment for hypertension? J Clin Neurosci. 2007;14(6):592–595.

47. Pereira EA, Wang S, Paterson DJ, Stein JF, Aziz TZ, Green AL. Sustained reduction of hypertension by deep brain stimulation. J Clin Neurosci. 2010;17(1):124–127.

48. Sverrisdottir YB, Green AL, Aziz TZ, Bahuri NF, Hyam J, Basnayake SD et al. Differentiated baroreflex modulation of sympathetic nerve activity during deep brainstimulation in humans. Hypertension. 2014;63(5):1000–10. doi: 10.1161/HYPERTENSIONAHA.113.02970

49. Manchikanti L, Singh V, Pampati V, Smith HS, Hirsch JA. Analysis of growth ofinterventional techniquesin managing chronic pain in Medicare population: A 10-year evaluation from 1997 to 2006. Pain Physician. 2009;12(1):9–34.

50. Issa ZF, Zhou X, Ujhelyi MR, Rosenberger J, Bhakta D, Groh WJ et al. Thoracic spinal cord stimulation reduces the risk of ischemic ventricular arrhythmiasin a postinfarction heart failure canine model. Circulation. 2005;111(24):3217–3220.

51. Olgin JE, Takahashi T, Wilson E, Vereckei A, Steinberg H, Zipes DP. Effects ofthoracic spinal cord stimulation on cardiac autonomic regulation of the sinus and atrioventricular nodes. J Cardiovasc Electrophysiol. 2002;13(5):475–481.

52. Linderoth B, Herregodts P, Meyerson BA. Sympathetic mediation of peripheral vasodilation induced by spinal cord stimulation: Animal studies of the role of cholinergic and adrenergic receptor subtypes. Neurosurgery. 1994;35 (4):711–719.

53. Croom JE, Foreman RD, Chandler MJ, Barron KW. Cutaneous vasodilation during dorsal column stimulation is mediated by dorsal roots and CGRP. Am J Physiol. 1997;272 (2Pt2): H950–957.

54. Tanaka S, Komori N, Barron KW, Chandler MJ, Linderoth B, Foreman RD. Mechanisms of sustained cutaneous vasodilation induced by spinal cord stimulation. Auton Neurosci. 2004;114 (1–2):55–60.

55. Schultz DM, Musley S, Beltrand P, Christensen J, Euler D, Warman E. Acute cardiovascular effects of epidural spinal cord stimulation. Pain Physician. 2007;10 (5):677–685.

56. Schultz DM, Zhou X, Singal A, Musley S. Cardiovascular effects of spinal cord stimulation in hypertensive patients. Pain Physician. 2011;14 (1):1–14.


Рецензия

Для цитирования:


Звартау Н.Э., Конради А.О. Интервенционные подходы к лечению артериальной гипертензии. Артериальная гипертензия. 2015;21(5):450-458. https://doi.org/10.18705/1607-419X-2015-21-5-450-458

For citation:


Zvartau N.E., Konradi A.O. Update on interventional approaches to treatment of hypertension. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2015;21(5):450-458. (In Russ.) https://doi.org/10.18705/1607-419X-2015-21-5-450-458

Просмотров: 1082


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)