Preview

Артериальная гипертензия

Расширенный поиск

Поражение почек при артериальной гипертензии: можем ли мы доверять старым маркерам?

https://doi.org/10.18705/1607-419X-2016-22-6-536-550

Полный текст:

Аннотация

В связи с высокой распространенностью хронической болезни почек (ХБП) в настоящее время, а также рядом недостатков традиционных параметров оценки почечной функции в последние несколько лет все больше внимания уделяется поиску новых маркеров поражения почек для более ранней и точной диагностики начала ХБП. В представленном обзоре приведены данные литературы о традиционных маркерах поражения почек в сравнении с новыми биохимическими маркерами, отражающими в основном тубулоинтерстициальное повреждение почек, происходящее на более ранних этапах поражения почек, проанализирована возможность использования ряда биомаркеров, таких как липокалин, ассоциированный с желатиназой нейтрофилов, молекула почечного повреждения, цистатин С и печеночная форма белка, связывающая жирные кислоты, в ранней диагностике как острого, так и хронического поражения почек, в том числе при гипертензивной нефропатии.

Об авторах

С. А. Миронова
Федеральное государственное бюджетное учреждение «Северо-Западный федеральный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

аспирант очной формы обучения научно-исследовательской лаборатории (НИЛ) патогенеза и терапии артериальной гипертензии научно-исследовательского отдела артериальной гипертензии (НИО АГ),

ул. Аккуратова, д. 2, Санкт-Петербург, 197341



Н. Э. Звартау
Федеральное государственное бюджетное учреждение «Северо-Западный федеральный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации; Университет ИТМО
Россия

кандидат медицинских наук, старший научный сотрудник НИЛ патогенеза и терапии артериальной гипертензии НИО АГ;

старший научный сотрудник,

Санкт-Петербург



А. О. Конради
Федеральное государственное бюджетное учреждение «Северо-Западный федеральный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации; Университет ИТМО
Россия

доктор медицинских наук, профессор, руководитель НИО АГ, заместитель генерального директора по научной работе;

директор Института трансляционной медицины, руководитель международной лаборатории «Системы поддержки принятия решений в медицине»,

Санкт-Петербург



Список литературы

1. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004;351(13):1296–1305. doi: 10.1056/NEJMoa041031.

2. Национальные рекомендации: Сердечно-сосудистый риск и хроническая болезнь почек: стратегии кардио-нефропротекции. Российский кардиологический журнал. 2014;8 (112):7–37. [National guidelines: cardiovascular risk and chronical kidney disease: cardio- and nephroprotection strategies. Russian Journal of Cardiology. 2014;8(112):7–37. In Russian].

3. Вельков В.В. NGAL— «ренальный тропонин», ранний маркер острого повреждения почек: актуальность для нефрологии и кардиохирургии. Клинико-лабораторный консилиум. 2011;2(38):90–100. [Velkov VV. NGAL — “renal troponin”, the early marker of acute kidney injury: relevance for nephrology and cardiosurgery. Kliniko-laboratorniy Konsilium = Clinical and Laboratory Consilium. 2011;2(38):90–100. In Russian].

4. Волков А. С., Шевченко О. В., Федотов Э. А., Бородулин В. Б. Цистатин С и NGAL (липокалин 2): маркеры преклинической болезни почек и субклинического острого повреждения почек у больных артериальной гипертензией. Здоровье и образование в XXI веке. 2012;14(2):36–38. [Volkov AS, Shevchenko OV, Fedotov EA, Borodulin VB. Cystatin C and NGAL (lipocalin 2): markers of preclinical kidney disease and subclinical acute kidney injury in patients with arterial hypertension. Health and education in XXI century. 2012;14(2):36–38. In Russian].

5. Stevens LA, Coresh J, Greene T, Levey AS. Assessing kidney function-measured and estimated glomerular filtration rate. N Engl J Med. 2006;354(23):2473–83. doi: 10.1056/NEJMra054415.

6. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. Modification of Diet in Renal Disease Study Group. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med. 1999;130 (6):461–70. doi:10.7326/0003–4819–130–6-199903160–00002.

7. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12. doi: 10.7326/0003–4819–150–9-200905050–00006.

8. Stevens LA, Claybon MA, Schmid CH, Chen J, Horio M, Imai E et al. Evaluation of the Chronic Kidney Disease Epidemiology Collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney Int. 2011;79(5):555–62. doi: 10.1038/ki.2010.462.

9. Вельков В.В. Цистатин С: новые возможности и новые задачи для лабораторной диагностики (часть 1). Клинико-лабораторный консилиум. 2010;5 (1):25–31. [Velkov VV. Cystatin C: new opportunities and new tasks for laboratory diagnostic (part 1). Clinical and laboratory consilium. 2010;5(1):25–31. In Russian].

10. 2012 KDIGO Clinical practice guideline for the evaluation and management of chronic kidney disease. Official J Int Soc Nephrol. 2013;3(1):1–150.

11. Takase H, Sugiura T, Ohte N, Dohi Y. Urinary albumin as a marker of future blood pressure and hypertension in the general population. Medicine (Baltimore). 2015;94(6): e511. doi: 10.1097/MD.0000000000000511.

12. Diercks GF, Stroes ES, van Boven AJ, van Roon AM, Hillege HL, de Jong PE et al. Urinary albumin excretion is related to cardiovascular risk indicators, not to flow-mediated vasodilation, in apparently healthy subjects. Atherosclerosis. 2002;163(1):121–6.

13. 2012 KDIGO clinical practice guideline for the evaluation and management of chronic kidney disease. Official J Intern Soc Nephrol. 2013;3(1):1–150.

14. Singer E, Markó L, Paragas N, Barasch J, Dragun D, Müller DN et al. Neutrophil gelatinase-associated lipocalin: pathophysiology and clinical applications. Acta Physiol (Oxf). 2013;207(4):663–72. doi: 10.1111/apha.12054.

15. Capotondo L, Nicolai GA, Garosi G. The role of color Doppler in acute kidney injury. Arch Ital Urol Androl. 2010;82 (4):275–9.

16. Meola M, Petrucci I. Ultrasound and color Doppler in nephrology. Acute kidney injury. G Ital Nefrol. 2012;29(5): 599–615.

17. Meola M, Samoni S, PetrucciI, Ronco C. Clinical scenariosin acute kidney injury: parenchymal acute kidney injury-tubulointerstitial diseases. Contrib Nephrol. 2016;188:39–47. doi: 10.1159/000445466.

18. Гажонова В.Е., Зыкова А.С., Чистяков А.А., Рощупкина С.В., Романова М.Д., Краснова Т. Н. Прогностическое значение индекса резистентности сосудов почек в оценке прогрессирования хронической болезни почек. Терапевт. арх. 2015;87(6):29–33. [Gazhonova VE, Zykova AS, Chistiakov AA, Roshchupkina SV, Romanova MD, Krasnova TN. Prognostic value of renal resistance index in estimating the progression of chronic kidney disease. Ter Arkh. 2015;87(6):29–33. In Russian].

19. Kimura N, Kimura H, Takahashi N, Hamada T, Maegawa H, Mori M et al. Renal resistive index correlates with peritubular capillary loss and arteriosclerosis in biopsy tissues from patients with chronic kidney disease. Clin Exp Nephrol. 2015;19(6):1114–9. doi: 10.1007/s10157–015–1116–0.

20. Sharafuddin MJ, Raboi CA, Abu-Yousef M, Lawton WJ, Gordon JA. Renal artery stenosis: duplex US after angioplasty and stent placement. Radiology. 2001;220(1):168–73. doi: 10.1148/radiology.220.1.r01jl11168.

21. Yuksel UC, Anabtawi AG, Cam A, Poddar K, Agarwal S, Goel S et al. Predictive value of renal resistive index in percutaneous renal interventions for atherosclerotic renal artery stenosis. J Invasive Cardiol. 2012;24(10):504–9.

22. Brouwers JJ, van Wissen RC, Veger HT, Rotmans JI, Mertens B, Visser MJ. The use ofintrarenal Doppler ultrasonography as predictor for positive outcome after renal artery revascularization. Vascular. 2016; doi: 10.1177/1708538116644871.

23. Galesić K, Brkljacić B, Sabljar-Matovinović M, Morović-Vergles J, Cvitković-Kuzmić A, Bozikov V. Renal vascular resistance in essential hypertension: duplex-Doppler ultrasonographic evaluation. Angiology. 2000;51(8):667–75.

24. Насруллаев М.Н., Ваганова Г.Р., Баязитова Л.И. Возможности допплерографии в диагностике поражения почек у больных артериальной гипертензией. Практическая медицина. 2011;4(52):53–55. [Nasrullaev MN, Vaganova GR, Bayazitova LI. The opportunities of ultrasound dopplerography in diagnostic of renal injury in patients with arterial hypertension. The Practical Medicine. 2011;4(52):53–55. In Russian].

25. Kawai T, Ohishi M, Kamide K, Nakama C, Onishi M, Ito N et al. Differences between daytime and nighttime blood pressure variability regarding systemic atherosclerotic change and renal function. Hypertens Res. 2013;36(3):232–9. doi: 10.1038/hr.2012.162.

26. Geraci G, Mulè G, Geraci C, Mogavero M, D’Ignoto F, Morreale M et al. Association of renal resistive index with aortic pulse wave velocity in hypertensive patients. Eur J Prev Cardiol. 2015;22(4):415–22. doi: 10.1177/2047487314524683.

27. Lisowska-Myjak B. Serum and urinary biomarkers of acute kidney injury. Blood Purification. 2010;29(4):357–365. doi: 10.1159/000309421.

28. Abassi Z, Sagi O, Armaly Z, Bishara B. Neutrophil gelatinase-associated lipocalin (NAGL): a novel biomarker for acute kidney injury. Harefuah. 2011;150(2):111–6,207,206.

29. Mårtensson J, Martling CR, Bell M. Novel biomarkers of acute kidney injury and failure: clinical applicability. Br J Anaesth. 2012;109(6):843–50. doi: 10.1093/bja/aes357.

30. Kamijo-Ikemori A, Sugaya T, Kimura K. Urinary fatty acid binding protein in renal disease. Clin Chim Acta. 2006;374 (1–2):1–7. doi:10.1016/j.cca.2006.05.038.

31. Bolignano D, Lacquaniti A, Coppolino G, Donato V, Campo S, Fazio MR et al. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(2):337–44. doi: 10.2215/CJN.03530708.

32. Devarajan P. The use of targeted biomarkers for chronic kidney disease. Adv Chronic Kidney Dis. 2010;17(6):469–79. doi: 10.1053/j.ackd.2010.09.002.

33. Satoh-Asahara N, Suganami T, Majima T, Kotani K, Kato Y, Araki R et al. Urinary cystatin C as a potential risk marker for cardiovascular disease and chronic kidney disease in patients with obesity and metabolic syndrome. Clin J Am Soc Nephrol. 2011;6(2):265–73. doi: 10.2215/CJN.04830610.

34. Bolignano D, Donato V, Coppolino G, Campo S, BuemiA, Lacquaniti A et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage. Am J Kidney Dis. 2008;52 (3):595–605. doi: 0.1053/j.ajkd.2008.01.020.

35. Bolignano D, Lacquaniti A, Coppolino G, Campo S, Arena A, Buemi M. Neutrophil gelatinase-associated lipocalin reflects the severity of renal impairment in subjects affected by chronic kidney disease. Kidney Blood Press Res. 2008;31(4):255–8. doi: 10.1159/000143726.

36. Ko GJ, Grigoryev DN, Linfert D, Jang HR, Watkins T, Cheadle C et al. Transcriptional analysis of kidneys during repair from AKI reveals possible roles for NGAL and KIM-1 as biomarkers of AKI-to-CKD transition. Am J Physiol Renal Physiol. 2010;298 (6): F1472–83. doi: 10.1152/ajprenal.00619.2009.

37. Brown WM, Dziegielewska KM. Friends and relations of the cystatin super family — new members and the irevolution. Protein Science. 1997;6:5–12. doi: 10.1002/pro.5560060102.

38. Bobek LA, Levine MJ. Cystatins-inhibitors of cysteine proteinases. Crit Rev Oral Biol Med. 1992;3(4):307–32.

39. Dandana A, Gammoudi I, Chalghoum A, Chahed H, Addad F, Ferchichi S et al. Clinical utility of serum cystatin C in predicting coronary artery disease in patients without chronic kidney disease. J Clin Lab Anal. 2014;28(3):191–7. doi: 10.1002/jcla.21665.

40. Yanavitski M, Givertz MM. Novel biomarkers in acute heart failure. Curr Heart Fail Rep. 2011;8(3):206–11. doi: 10.1007/s11897–011–0065–5.

41. Moran A, Katz R, Smith NL, Fried LF, Sarnak MJ, Seliger SL et al. Cystatin C concentration as a predictor of systolic and diastolic heart failure. J Card Fail. 2008;14(1):19–26. doi: 10.1016/j.cardfail.2007.09.002.

42. Pérez-Calvo JI, Morales Rull JL, Ruiz Ruiz FJ. Cystatin C: a protein for heart failure. Med Clin (Barc). 2011;136(4):158–62. doi: 10.1016/j.medcli.2009.11.013.

43. Sun TW, Xu QY, Yao HM, Zhang XJ, Wu Q, Zhang JY et al. The predictive value of plasma cystatin C for acute coronary syndrome treated with percutaneous coronary intervention. Heart Lung. 2012;41(5):456–62. doi: 10.1016/j.hrtlng.2012.04.007.

44. Manzano-Fernández S, López-Cuenca A, Januzzi JL, ParraPallares S, Mateo-Martínez A, Sánchez-Martínez M et al. Usefulness of β-trace protein and cystatin C for the prediction of mortality in non ST segment elevation acutecoronary syndromes. Am J Cardiol. 2012;110(9):1240–8. doi: 10.1016/j.amjcard.2012.06.027.

45. Almeida I, Caetano F, Barra S, Madeira M, Mota P, Leitão-Marques A. Estimating glomerular filtration rate in acute coronary syndromes: different equations, different mortality risk prediction. Eur Heart J Acute Cardiovasc Care. 2016;5(3):223–30. doi: 10.1177/2048872615576219.

46. Jernberg T, Lindahl B, James S, Larsson A, Hansson LO, Wallentin L. Cystatin C: a novel predictor of outcome in suspected or confirmed non-ST-elevation acute coronary syndrome. Circulation. 2004;110(16):2342–8. doi: 10.1161/01.CIR.0000145166.44942.E0.

47. Taglieri N, Fernandez-Berges DJ, Koenig W, ConsuegraSanchez L, Fernandez JM, Robles NR et al. Plasma cystatin C for prediction of 1-year cardiac events in Mediterranean patients with non-ST elevation acute coronary syndrome. Atherosclerosis. 2010;209(1):300–5. doi: 10.1016/j.atherosclerosis.2009.09.022.

48. Kos J, Werle B, Lah T, Brunner N. Cysteine proteinases and their inhibitorsin extracellular fluids: markers for diagnosis and prognosis in cancer. Int J Biol Markers. 2000;15(1):84–9.

49. Dikovskaya MA, Trunov AN, ChernykhVV, KorolenkoTA. Cystatin C and lactoferrin concentrations in biological fluids as possible prognostic factors in eye tumor development. Int J Circumpolar Health. 2013;72.eCollection 2013. doi: 10.3402/ijch.v72i0.21087.

50. Zhang X, Hou Y, Niu Z, Li W, Meng X, Zhang N et al. Clinical significance of detection of cathepsin X and cystatin Cin the sera of patients with lung cancer. Chinese J Lung Cancer. 2013;16 (8):411–6. doi: 10.3779/j.issn.1009–3419.2013.08.04.

51. Randers E, Erlandsen EJ. Serum cystatin C as an endogenous marker of the renal function a review. Clin Chem Lab Med. 1999;37(4):389–95. doi:10.1515/CCLM.1999.064.

52. Christensson A, Ekberg J, Grubb A, Ekberg H, LindströmV, Lilja H. Serum cystatin C is a more sensitive and more accurate marker of glomerular filtration rate than enzymatic measurements of creatinine in renal transplantation. Nephron Physiol. 2003;94 (2):19–27. doi: 71287.

53. Pöge U, Gerhardt T, Stoffel-Wagner B, Palmedo H, Klehr HU, Sauerbruch T et al. Cystatin C‑based calculation of glomerular filtration rate in kidney transplant recipients. Kidney Int. 2006;70 (1):204–10. doi: 10.1038/sj.ki.5001502.

54. White C, Akbari A, Hussain N, Dinh L, Filler G, Lepage N et al. Chronic kidney disease stage in renal transplantation classification using cystatin C and creatinine-based equations. Nephrol Dial Transplant. 2007;22(10):3013–20. doi:10.1093/ndt/gfm318.

55. Briguori C, Visconti G, Rivera NV, Focaccio A, Golia B, Giannone R et al. Cystatin C and Contrast-Induced Acute Kidney Injury. Circulation. 2010;121(19):2117–22. doi: 10.1161/CIRCULATIONAHA.109.919639.

56. Nejat M, Pickering JW, Walker RJ, Endre ZH. Rapid detection of acute kidney injury by plasma cystatin Cin the intensive care unit. Nephrol Dial Transplant. 2010;25(10):3283–9. doi: 10.1093/ndt/gfq176.

57. Mussap M, Dalla Vestra M, Fioretto P, Saller A, Varagnolo M, Nosadini R et al. Cystatin C is a more sensitive marker than creatinine for the estimation of GFR in type 2 diabetic patients. Kidney Int. 2002;61(4):1453–61. doi: 10.1046/j.1523–1755. 2002.00253.x.

58. Macisaac RJ, Tsalamandris C, Thomas MC, Premaratne E, Panagiotopoulos S, Smith TJ et al. The accuracy of cystatin C and commonly used creatinine-based thods for detecting moderate and mild chronic kidney disease in diabetes. Diabet Med. 2007;24 (4):443–8. doi: 10.1111/j.1464–5491.2007.02112.x.

59. Willems D, Wolff F, Mekahli F, Gillet C. Cystatin C for early detection of renal impairment in diabetes. Clin Biochem. 2009;42(1–2):108–10. doi: 10.1016/j.clinbiochem.2008.10.002.

60. Jerums G, Premaratne E, Panagiotopoulos S, Clarke S, Power DA, MacIsaac RJ. New and old markers of progression of diabetic nephropathy. Diabetes Res Clin Pract. 2008;82 Suppl 1:S30–7. doi: 10.1016/j.diabres.2008.09.032.

61. Zhu Y, Zhang HP, Wang YC, Ren TT, Li J, Xu ML et al. Serum cystatin C level is associated with carotid intima-media thickening and plaque. Scand J Clin Lab Invest. 2015;75(3):265–72. doi: 10.3109/00365513.2015.1006137.

62. Triki S, Fekih O, Hellara I, Neffati F, Douki W, Hamda KB et al. Association between serum cystatin C levels and cardiovascular disease in type 2 diabetic patients. Ann Biol Clin (Paris). 2013;71(4):438–42. doi: 10.1684/abc.2013.0857.

63. Vigil A, Condés E, Vigil L, Gallar P, Oliet A, Ortega O et al. Cystatin C as a predictor of mortality and cardiovascular events in a population with chronic kidney disease. Int J Nephrol. 2014;2014:127943. doi: 10.1155/2014/127943.

64. Helmersson-Karlqvist J, Ärnlöv J, Carlsson AC, Härmä J, Larsson A. Increased urinary cystatin C indicated higher risk of cardiovascular death in a community cohort. Atherosclerosis. 2014;234(1):108–13. doi: 10.1016/j.atherosclerosis.2014.02.020.

65. Helmersson-Karlqvist J, Ärnlöv J, Larsson A. Cystatin C‑based glomerular filtration rate associates more closely with mortality than creatinine-based or combined glomerular filtration rate equations in unselected patients. Eur J Prev Cardiol. 2016;23 (15):1649–57. doi: 10.1177/2047487316642086.

66. Watanabe S, Okura T, Liu J, Miyoshi K, Fukuoka T, Hiwada K et al. Serum cystatin C level is a marker of end-organ damage in patients with essential hypertension. Hypertens Res. 2003;26(11):895–9.

67. Shankar A, Teppala S. Relationship between serum cystatin C and hypertension among US adults without clinically recognized chronic kidney disease. J Am Soc Hypertens. 2011;5(5):378–84. doi: 10.1016/j.jash.2011.03.003.

68. Moura Rdo S, Vasconcelos DF, Freitas E, de Moura FJ, Rosa TT, Veiga JP. Cystatin C, CRP, log TG/HDLc and metabolic syndrome are associated with microalbuminuria in hypertension. Arq Bras Cardiol. 2014;102(1):54–9. doi: 10.5935/abc.20130210.

69. Palatini P, Benetti E, Zanier A, Santonastaso M, MazzerA, Cozzio S et al. Cystatin C as predictor of microalbuminuria in the early stage of hypertension. Nephron Clin Pract. 2009;113 (4):309–14. doi: 10.1159/000235949.

70. Ozkok A, Akpinar TS, Tufan F, Kaya O, Bozbey HU, Atas R et al. Cystatin C is better than albuminuria as a predictor of pulse wave velocity in hypertensive patients. Clin Exp Hypertens. 2014;36 (4):222–6. doi: 10.3109/10641963.2013.804548.

71. Kato K, Takata Y, Usui Y, Shiina K, Asano K, Hashimura Y et al. Severe obstructive sleep apnea increases cystatin C in clinically latent renal dysfunction. Respir Med. 2011;105(4):643–9. doi: 10.1016/j.rmed.2010.11.024.

72. Jiang Q, Li TP, Pang B, Wang X, Wang YF. Severe obstructive sleep apnea-hypopnea syndrome with latent renal dysfunction: analysis of 238 cases. Nan Fang Yi Ke Da Xue Xue Bao. 2016;36(3):339–44.

73. Schmidt-Ott KM, Mori K, Li JY, Kalandadze A, Cohen DJ, Devarajan P et al. Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2007;18 (2):407–13. doi: 10.1681/ASN.2006080882.

74. Marchewka Z, Tacik A, Piwowar A. KIM‑1 and NGAL as potential biomarkers for the diagnosis and cancer progression. Postepy Hig Med Dosw (Online). 2016;70:329–36.

75. Choi KM, Lee JS, Kim EJ, Baik SH, Seo HS, Choi DS et al. Implication of lipocalin-2 and visfatin levelsin patients with coronary heart disease. Eur J Endocrinol. 2008;158 (2):203–7. doi: 10.1530/EJE‑07–0633.

76. Bolignano D, Basile G, Parisi P, Coppolino G, Nicocia G, Buemi M. Increased plasma neutrophil gelatinase-associated lipocalin levels predict mortality in elderly patients with chronic heart failure. Rejuvenation Res. 2009;12(1):7–14. doi: 10.1089/rej.2008.0803.

77. Damman K, van Veldhuisen DJ, Navis G, Voors AA, HillegeHL. Urinary neutrophil gelatinase associated lipocalin (NGAL), a marker of tubular damage, is increased in patients with chronic heart failure. Eur J Heart Fail. 2008;10(10):997–1000. doi: 10.1016/j.ejheart.2008.07.001.

78. Poniatowski B, Malyszko J, Bachorzewska-Gajewska H, Malyszko JS, Dobrzycki S. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in patients with chronic heart failure and coronary artery disease. Kidney Blood Press Res. 2009;32(2):77–80. doi: 10.1159/000208989.

79. Bielecka-Dabrowa A, Gluba-Brzózka A, MichalskaKasiczak M, Misztal M, Rysz J, Banach M. The multi-biomarker approach for heart failure in patients with hypertension. Int J Mol Sci. 2015;16(5):10715–33. doi: 10.3390/ijms160510715.

80. Hemdahl AL, Gabrielsen A, Zhu C, Eriksson P, Hedin U, Kastrup J et al. Expression of neutrophil gelatinase-associated lipocalin in atherosclerosis and myocardial infarction. Arterioscler Thromb Vasc Biol. 2006;26(1):136–42. doi: 10.1161/01.ATV. 0000193567.88685.f4.

81. Yndestad A, Landrø L, Ueland T, Dahl CP, Flo TH, Vinge LE et al. Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical andexperimental heart failure. Eur Heart J. 2009;30(10):1229–36. doi: 10.1093/eurheartj/ehp088.

82. Eilenberg W, Stojkovic S, Piechota-Polanczyk A, Kaun C, Rauscher S, Gröger M et al. Neutrophil GelatinaseAssociated Lipocalin (NGAL) is associated with symptomatic carotid atherosclerosis and drives pro-inflammatory state in vitro. Eur J Vasc Endovasc Surg. 2016;51(5):623–31. doi: 10.1016/j.ejvs.2016.01.009.

83. Padhy M, Kaushik S, Girish MP, Mohapatra S, Shah S, Koner BC. Serum neutrophil gelatinase associated lipocalin (NGAL) and cystatin C as early predictors of contrast-induced acute kidney injury in patients undergoing percutaneous coronaryintervention. Clin Chim Acta. 2014;435:48–52. doi: 10.1016/j.cca.2014.04.016.

84. Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, Malyszko JS, Dobrzycki S. Neutrophil-gelatinase-associated lipocalin and renal function after percutaneous coronary interventions. Am J Nephrol. 2006;26(3):287–92 doi:10.1159/000093961.

85. Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, Malyszko JS, Pawlak K, Mysliwiec M et al. Could neutrophilgelatinase-associated lipocalin and cystatin C predict the development of contrast-induced nephropathy after percutaneous coronary interventions in patients with stable angina and normal serum creatinine values? Kidney Blood Press Res. 2007;30 (6):408–15. doi:10.1159/000109102.

86. Ghonemy TA, Amro GM. Plasma neutrophil gelatinaseassociated lipocalin (NGAL) and plasma cystatin C (CysC) as biomarker of acute kidney injury after cardiac surgery. Saudi J Kidney Dis Transpl. 2014;25(3):582–8.

87. Kidher E, Harling L, Ashrafian H, Naase H, ChukwuemekaA, Anderson J et al. Pulse wave velocity and neutrophil gelatinaseassociated lipocalin as predictors of acute kidney injury following aorticvalve replacement. J Cardiothorac Surg. 2014;9:89. doi: 10.1186/1749–8090–9.

88. Пролетов Я.Ю., Саганова Е.С., Смирнов А.В. Биомаркеры в диагностике острого повреждения почек. Нефрология. 2014;18(4):25–35. [Proletov IaIu, Saganova ES, Smirnov AV. Biomarkers in the diagnosis of acute kidney injury. Nephrology. 2014;18(4):25–35. In Russian].

89. Makris K, Markou N, Evodia E, Dimopoulou E, Drakopoulos I, Ntetsika K et al. Urinary neutrophil gelatinaseassociated lipocalin (NGAL) as an early marker of acute kidney injury in critically ill multiple trauma patients. Clin Chem Lab Med. 2009;47(1):79–82. doi: 10.1515/CCLM.2009.004.

90. Peralta CA, Katz R, Bonventre JV, Sabbisetti V, Siscovick D, Sarnak M et al. Associations of urinary levels of kidney injury molecule 1 (KIM‑1) and neutrophil gelatinase-associated lipocalin (NGAL) with kidney function decline in the MultiEthnic Study of Atherosclerosis (MESA). Am J Kidney Dis. 2012;60(6):904–11. doi: 10.1053/j.ajkd.2012.05.014.

91. Bolignano D, Lacquaniti A, Coppolino G, Campo S, Arena A, Buemi M. Neutrophil gelatinase-associated lipocalin reflects the severity of renal impairment in subjects affected by chronic kidney disease. Kidney Blood Press Res. 2008;31(4):255–8. doi: 10.1159/000143726.

92. Patel ML, Sachan R, Verma A, Kamal R, Gupta KK. Neutrophil gelatinase-associated lipocalin as a biomarker of disease progression in patients with chronic kidney disease. Indian J Nephrol. 2016;26(2):125–30. doi: 10.4103/0971–4065.157799.

93. Ezenwaka CE, Idris S, Davis G, Roberts L. Measurement of neutrophil gelatinase-associated lipocalin (NGAL) in patients with non-communicable diseases: any additional benefit? Arch Physiol Biochem. 2016;122(2):70–4. doi: 10.3109/13813455.2016.1140212.

94. Kraydaschenko OV, Abramov AV, Dolinnaya MA. Role of biomarkers in estimation of renal tubulointerstitial tissue damage in patients with chronic glomerulonephritis. Lik Sprava. 2015;(3–4):61–5.

95. Bolignano D, Lacquaniti A, Coppolino G, Donato V, Fazio MR, Nicocia G et al. Neutrophil gelatinase-associated lipocalin as an early biomarker of nephropathy in diabetic patients. Kidney Blood Press Res. 2009;32(2):91–8. doi: 10.1159/000209379.

96. Chung JO, Park SY, Cho DH, Chung DJ, ChungMY. Plasma neutrophil gelatinase-associated lipocalin levels are positively associated with diabetic retinopathy in patients with Type 2 diabetes. Diabet Med. 2016; doi: 10.1111/dme.13141.

97. Malyszko J, Bachorzewska-Gajewska H, Sitniewska E, Malyszko JS, Poniatowski B, Dobrzycki S. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in nondiabetic patients with stage 2–4 chronic kidney disease. Ren Fail. 2008;30(6):625–8. doi: 10.1080/08860220802134607.

98. Chaudhary K, Phadke G, Nistala R, Weidmeyer CE, McFarlane SI, Whaley-Connell A. The emerging role of biomarkersin diabetic and hypertensive chronic kidney disease. Curr Diab Rep. 2010;10(1):37–42. doi: 10.1007/s11892–009–0080‑z.

99. Prkacin I, Ozvald I, Cavrić G, Balenović D, Bulum T, Flegar-Mestrić Z. Importance of urinary NGAL, serum creatinine standardization and estimated glomerular filtration rate in resistant hypertension. Coll Antropol. 2013;37(3):821–5.

100. Malyszko J, Bachorzewska-Gajewska H, Malyszko JS, Pawlak K, Dobrzycki S. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in hypertensive and normotensive patients with coronary artery disease. Nephrology (Carlton). 2008;13(2):153–6. doi: 10.1111/j.1440–1797.2007.00899.x.

101. Blumczynski A, Sołtysiak J, Lipkowska K, Silska M, Poprawska A, Musielak A et al. Hypertensive nephropathy in children — do we diagnose early enough? Blood Press. 2012;21 (4):233–9. doi: 10.3109/08037051.2012.666393.

102. Aksan G, İnci S, Nar G, Siğirci S, Gedikli Ö, Soylu K et al. Serum neutrophıl gelatınase-assocıated lıpocalın levels in patients with non-dipper hypertension. Clin Invest Med. 2015;38 (2): E53–62.

103. Leoncini G, Mussap M, Viazzi F, Fravega M, Degrandi R, Bezante GP et al. Combined use of urinary neutrophil gelatinaseassociated lipocalin (uNGAL) and albumin as markers of early cardiac damage in primary hypertension. Clin Chim Acta. 2011;412 (21–22):1951–6. doi: 10.1016/j.cca.2011.06.043.

104. Gharishvandi F, Kazerouni F, Ghanei E, Rahimipour A, Nasiri M. Iran Comparative assessment of Neutrophil GelatinaseAssociated Lipocalin (NGAL) and cystatin C as early biomarkers for early detection of renal failure in patients with hypertension. Biomed J. 2015;19(2):76–81.

105. Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL et al. Kidney injury molecule‑1 (KIM‑1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 1998;273(7):4135–42.

106. Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol. 2006;290(2): F517–29. doi: 10.1152/ajprenal.00291.2005.

107. Vaidya VS, Ford GM, Waikar SS, Wang Y, Clement MB, RamirezV et al. A rapid urine test for early detection of kidney injury. Kidney Int. 2009;76(1):108–114. doi: 10.1038/ki.2009.96.

108. Bonventre JV, Yang L. Kidney injury molecule‑1. Curr Opin Crit Care. 2010;16(6):556–61. doi: 10.1097/MCC.0b013e32834008d3.

109. Koyner JL, Vaidya VS, Bennett MR, Ma Q, Worcester E, Akhter SA et al. Urinary biomarkers in the clinical prognosis and early detection of acute kidney injury. Clin J Am Soc Nephrol. 2010;5(12):2154–65. doi: 10.2215/CJN.00740110.

110. Parikh CR, Thiessen-Philbrook H, Garg AX, Kadiyala D, Shlipak MG, Koyner JL et al. Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery. Clin J Am Soc Nephrol. 2013;8(7):1079–88. doi: 10.2215/CJN.10971012.

111. Szeto CC, Kwan BC, Lai KB, Lai FM, Chow KM, Wang G et al. Urinary expression of kidney injury markersin renal transplant recipients. Clin J Am Soc Nephrol. 2010;4(12):2329–2337. doi: 10.2215/CJN.01910310.

112. Добронравов В.А., Смирнов К.А., Афанасьев Б.В., Галкина О. В., Смирнов А. В. Острое повреждение почек и канальцевые биомаркеры при трансплантации гемопоэтических стволовых клеток. Терапевт. арх. 2016;88(6):14–20. [Dobronravov VA, Smirnov KA, Afanas’ev BV, Galkina OV, Smirnov AV. Acute kidney injury and tubular biomarkers after hematopoietic stem cell transplantation. Ter Arkh. 2016;88 (6):14–20. In Russian].

113. Hawkins R. New biomarkers of acute kidney injury and the cardio-renal syndrome. Korean J Lab Med. 2011;31(2):72–80. doi: 10.3343/kjlm.2011.31.2.72.

114. Humphreys BD, Xu F, Sabbisetti V, Grgic I, Naini SM, Wang N et al. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J Clin Invest. 2013;123 (9):4023–35. doi: 10.1172/JCI45361.

115. Hisamichi M, Kamijo-Ikemori A, Sugaya T, Ichikawa D, Hoshino S, Hirata K et al. Increase in urinary markers during the acute phase reflects the degree of chronic tubulointerstitial injury after ischemia-reperfusion renal injury. Biomarkers. 2016;30:1–9. doi: 10.2215/CJN.01910310.

116. Waanders F, Vaidya VS, van Goor H, Leuvenink H, Damman K, Hamming I et al. Effect of renin-angiotensinaldosterone system inhibition, dietary sodium restriction, and/or diuretics on urinarykidney injury molecule 1 excretion in nondiabetic proteinuric kidney disease: a post hoc analysis of a randomized controlled trial. Am J Kidney Dis. 2009;53(1):16–25. doi: 10.1053/j.ajkd.2008.07.021.

117. Lekawanvijit S, Kompa AR, Zhang Y, Wang BH, Kelly DJ, Krum H. Myocardial infarction impairs renal function, induces renal interstitial fibrosis, and increases renal KIM-1expression: implications for cardiorenal syndrome. Am J Physiol Heart Circ Physiol. 2012;302(9):1884–93. doi: 10.1152/ajpheart.00967.2011.

118. Damman K, Masson S, Hillege HL, Voors AA, van Veldhuisen DJ, Rossignol P et al. Tubular damage and worsening renal function in chronic heart failure. JACC Heart Fail. 2013; 1(5):417–24. doi: 10.1016/j.jchf.2013.05.007.

119. Driver TH, Katz R, Ix JH, Magnani JW, Peralta CA, Parikh CR et al. Urinary kidney injury molecule 1 (KIM‑1) and interleukin 18(IL‑18) as risk markers for heart failure in older adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Kidney Dis. 2014;64(1):49–56. doi: 10.1053/j.ajkd.2014.01.432.

120. Carlsson AC, Larsson A, Helmersson-Karlqvist J, Lind L, Ingelsson E, Larsson TE et al. Urinary kidney injury molecule 1 and incidence of heart failure in elderly men. Eur J Heart Fail. 2013; 15(4):441–6. doi: 10.1093/eurjhf/hfs187.

121. Vernuccio F, Grutta G, Ferrara F, Novo G, Novo S. Cardiorenal syndrome: the role of new biochemical markers. Recenti Prog Med. 2012;103(12):559–63. doi: 10.1701/1206.13356.

122. Bouquegneau A, Krzesinski JM, Delanaye P, Cavalier E. Biomarkers and physiopathology in the cardiorenal syndrome. Clin Chim Acta. 2015;443:100–7. doi: 10.1016/j.cca.2014.10.041.

123. Heijnen BF, Van Essen H, Schalkwijk CG, Janssen BJ, Struijker-Boudier HA. Renal inflammatory markers during the onset of hypertension in spontaneously hypertensive rats. Hypertens Res. 2014;37(2):100–9. doi: 10.1038/hr.2013.99.

124. Hosohata K, Yoshioka D, Tanaka A, Ando H, Fujimura A. Early urinary biomarkers for renal tubular damage in spontaneously hypertensive rats on a high salt intake. Hypertens Res. 2016;39(1):19–26. doi: 10.1038/hr.2015.103.

125. Kadioglu T, Uzunlulu M, Yigit Kaya S, Oguz A, Ggonenli G, Isbilen B et al. Urinary kidney injury molecule‑1 levels as a marker of early kidney injury in hypertensive patients. Minerva Urol Nefrol. 2016;68(5):456–61.

126. Tsigou E, Psallida V, Demponeras C, Boutzouka E, Baltopoulos G. Role of new biomarkers: functional and structural damage. Crit Care Res Pract. 2013;2013:361078. doi: 10.1155/2013/361078.

127. Kamijo-Ikemori A, Sugaya T, Matsui K, Yokoyama T, Kimura K. Roles of human liver type fatty acid binding protein in kidney disease clarified using hL-FABP chromosomal transgenic mice. Nephrology (Carlton). 2011;16(6):539–44. doi: 10.1111/j.1440–1797.2011.01469.x.

128. Yokoyama T, Kamijo-Ikemori A, Sugaya T, Hoshino S, Yasuda T, Kimura K. Urinary excretion of liver type fatty acid binding protein accurately reflects the degree of tubulointerstitial damage. Am J Pathol. 2009;174(6):2096–106. doi: 10.2353/ajpath.2009.080780.

129. Moore E, Bellomo R, Nichol A. Biomarkers of acute kidney injury in anesthesia, intensive care and major surgery: from the bench to clinical research to clinical practice. Minerva Anestesiol. 2010;76(6):425–40.

130. Doi K, Noiri E, Sugaya T. Urinary L‑type fatty acid-binding protein as a new renal biomarker in critical care. Curr Opin Crit Care. 2010;16(6):545–9. doi: 10.1097/MCC.0b013e32833e2fa4.

131. McMahon BA, Murray PT. Urinary liver fatty acidbinding protein: another novel biomarker of acute kidney injury. Kidney Int. 2010;77(8):657–9. doi: 10.1038/ki.2010.5.

132. Mori K, Mukoyama M, Kasahara M, Yokoi H, Nakao K. Disease biomarkers for CKD. Nihon Rinsho. 2012;70 (5):864–8.

133. Xu Y, Xie Y, Shao X, Ni Z, Mou S. L‑FABP: A novel biomarker of kidney disease. Clin Chim Acta. 2015;445:85–90. doi: 10.1016/j.cca.2015.03.017.

134. Matsui K, Kamijo-Ikemori A, Imai N, Sugaya T, YasudaT, Tatsunami S et al. Clinical significance of urinary liver-type fatty acid-binding protein as a predictor of ESRD and CVD in patients with CKD. Clin Exp Nephrol. 2016;20(2):195–203. doi: 10.1007/s10157–015–1144–9.

135. Sasaki H, Kamijo-Ikemori A, Sugaya T, Yamashita K, Yokoyama T, Koike J et al. Urinary fatty acids and liver-type fatty acid binding protein in diabetic nephropathy. Nephron Clin Pract. 2009;112(3):148–56. doi: 10.1159/000214210.

136. Ishimitsu T, Ohta S, Saito M, Teranishi M, Inada H, Yoshii M et al. Urinary excretion of liver fatty acid-binding protein in health-check participants. Clin Exp Nephrol. 2005;9 (1):34–9. doi: 10.1007/s10157–004–0331‑x.

137. Latouche C, El Moghrabi S, Messaoudi S, Nguyen Dinh Cat A, Hernandez-Diaz I et al. Neutrophil gelatinaseassociated lipocalin is a novel mineralocorticoid target in the cardiovascular system. Hypertension. 2012;59(5):966–72. doi:10.1161/HYPERTENSIONAHA.111.187872.

138. Tarjus A, Martínez-Martínez E, Amador C, Latouche C, El Moghrabi S, Berger T et al. Neutrophil Gelatinase-Associated Lipocalin, a novel mineralocorticoid biotarget, mediates vascular profibrotic effects of mineralocorticoids. Hypertension. 2015;66 (1):158–66. doi: 10.1161/HYPERTENSIONAHA.115.05431.

139. Nielsen SE, Rossing K, Hess G, Zdunek D, Jensen BR, Parving HH et al. The effect of RAAS blockade on markers of renal tubular damage in diabetic nephropathy: u‑NGAL, u‑KIM1 and u‑LFABP. Scand J Clin Lab Invest. 2012;72(2):137–42. doi: 10.3109/00365513.2011.645055.

140. Saraswat MS, Addepalli V, Jain M, Pawar VD, Patel RB. Renoprotective activity of aliskiren, a renin inhibitor in cyclosporine Ainduced hypertensive nephropathy in dTG mice. Pharmacol Rep. 2014;66(1):62–7. doi: 10.1016/j.pharep.2013.08.005.

141. Ichikawa D, Kamijo-Ikemori A, Sugaya T, Shibagaki Y, Yasuda T, Katayama K et al. Renoprotective effect of renal liver-type fatty acid binding protein and angiotensin II type 1a receptor lossin renal injury caused by RAS activation. Am J Physiol Renal Physiol. 2014;306(6):655–63. doi: 10.1152/ajprenal.00460.2013.

142. Ichikawa D, Kamijo-Ikemori A, Sugaya T, Shibagaki Y, Yasuda T, Hoshino S et al. Human liver-type fatty acid-binding protein protects against tubulointerstitial injury in aldosteroneinduced renal injury. Am J Physiol Renal Physiol. 2015;308 (2):114–21. doi: 10.1152/ajprenal.00469.2014.

143. Ichikawa D, Kamijo-Ikemori A, Sugaya T, Yasuda T, Hoshino S, Igarashi-Migitaka J et al. Renal liver-type fatty acid binding protein attenuates angiotensin II-induced renal injury. Hypertension. 2012;60(4):973–80. doi: 10.1161/HYPERTENSIONAHA.112.199828.

144. Nakamura T, Inoue T, Sugaya T, Kawagoe Y, Suzuki T, UedaY et al. Renoprotective effect of telmisartan in patients with chronic kidney disease. Clin Exp Hypertens. 2008;30(7):662–72. doi: 10.1080/10641960802443373.

145. Nakamura T, Fujiwara N, Kawagoe Y, Sugaya T, Ueda Y, Koide H. Effects of telmisartan and enalapril on renoprotection in patients with mild to moderate chronic kidney disease. Eur J Clin Invest. 2010;40(9):790–6. doi: 10.1111/j.1365–2362.2010. 02319.x.

146. Abe M, Maruyama N, Oikawa O, Maruyama T, Okada K, Soma M. Urinary ACE2 is associated with urinary L-FABP and albuminuria in patients with chronic kidney disease. Scand J Clin Lab Invest. 2015;75(5):421–7. doi: 10.3109/00365513.2015.1054871.


Для цитирования:


Миронова С.А., Звартау Н.Э., Конради А.О. Поражение почек при артериальной гипертензии: можем ли мы доверять старым маркерам? Артериальная гипертензия. 2016;22(6):536-550. https://doi.org/10.18705/1607-419X-2016-22-6-536-550

For citation:


Mironova S.A., Zvartau N.E., Konradi A.O. Kidney injury in arterial hypertension: can we trust the old markers? "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2016;22(6):536-550. (In Russ.) https://doi.org/10.18705/1607-419X-2016-22-6-536-550

Просмотров: 3500


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)