Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

THE ROLE OF NA+, K+, 2CL–-COTRANSPORT IN THE H2S-DEPENDENT REGULATION OF CONTRACTILE ACTIVITY OF SMOOTH MUSCLE CELLS FROM RAT PULMONARY ARTERY

https://doi.org/10.18705/1607-419X-2017-23-5-395-402

Abstract

Objective. Hydrogen sulfide (H2S) is one of gasotransmitters that participate in the regulation of a large number of cellular functions. H2S can also act as a pathological link in the development of vascular diseases, in particular hypertension. Na+, K+, 2Cl–-cotransporter (NKCC) might play an important role in vascular tone increasing due to involvement of chloride currents in the depolarization of smooth muscle cell membrane. Significant differences in the regulatory mechanisms of contractile properties of the vessels of systemic and pulmonary circulation might depend on the mechanisms of NKCC. So its role as a target for H2S requires investigation. Design and methods. The changes in mechanical tension of ring segments from pulmonary artery (PA) of WKY and SHR rats under the action of the donor of H2S (L-cysteine) was studied by organ bath technique. Results. L-cysteine caused multidirectional effects on mechanical tension of PA smooth muscle cells from WKY rats precontracted with 30 mM KCl. Bumetanide (100 μM) suppressed the relaxation but not constriction of the intact and endotheliumdenuded vascular segments caused by L-cysteine. In ring segments from PA of SHR rats, L-cysteine potentiated constriction in segments with intact endothelium but caused relaxation in endothelium-denuded segments.

About the Authors

A. V. Nosarev
 Siberian State Medical University; Tomsk Polytechnic University.
Russian Federation

Alexey V. Nosarev, MD, PhD, DSc, Professor, Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Professor, Department of Applied Physics, Tomsk Polytechnic University.

2/7 Moskovskii trakt, Tomsk, 634050.



Yu. G. Birulina
 Siberian State Medical University. 
Russian Federation

Yulia G. Birulina, PhD in Biological Sciences, Assistant Professor, Department of Biophysics and Functional Diagnostics, Siberian State Medical University.

Tomsk.



I. V. Kovalev
 Siberian State Medical University. 
Russian Federation

Igor V. Kovalev, MD, PhD, DSc, Professor, Department of Biophysics and Functional Diagnostics, Siberian State Medical University.

Tomsk. 



L. V. Smaglii
 Siberian State Medical University. 
Russian Federation

Liudmila V. Smaglii, MD, PhD, DSc, Assistant Professor, Department of Biophysics and Functional Diagnostics, Siberian State Medical University.

Tomsk.



S. V. Gusakova
 Siberian State Medical University. 
Russian Federation

Svetlana V. Gusakova, MD, PhD, DSc, Head, Department of Biophysics and Functional Diagnostics, Siberian State Medical University.

Tomsk.



I. V. Petrova
 Siberian State Medical University. 
Russian Federation
Irina V. Petrova, PhD in Biological Sciences, DSc, Professor, Department of Biophysics and Functional Diagnostics, Siberian State Medical University


V. S. Rydchenko
 Siberian State Medical University. 
Russian Federation

Victoria S. Rydchenko, MD, PhD Student, Siberian State Medical University.

Tomsk.



V. A. Polivshchikova
 Siberian State Medical University.
Russian Federation

Veronika A. Polivshchikova, Student, Siberian State Medical University.

Tomsk.



M. A. Medvedev
 Федеральное государственное бюджетное  образовательное учреждение высшего образования  «Сибирский государственный медицинский университет»  Министерства здравоохранения Российской Федерации.
Russian Federation

Mikhail A. Medvedev, MD, PhD, DSc, Professor, Honored Scientist of the Russian Federation, Academician of the Russian Academy of Sciences, Head, Department of Normal Physiology, Siberian State Medical University.

Tomsk.



References

1. Гусакова С. В., Ковалев И. В., Смаглий Л. В., Бирулина Ю. Г., Носарев А. В., Петрова И. В. и др. Газовая сигнализация в клетках млекопитающих. Успехи физиол. наук. 2015;46 (4):53–73. [Gusakova SV, Kovalev IV, Smagliy LV, Birulina YG, Nosarev AV, Petrova IV et al. Gas signaling in mammalian cells. Uspekhi Fiziologicheskikh Nauk = Successes of Physiology Sciences. 2015;46(4):53–73. In Russian].

2. Смаглий Л. В., Гусакова С. В., Бирулина Ю. Г., Ковалев И. В., Орлов С. Н. Роль сероводорода в объем-зависимых механизмах регуляции сократительной активности гладкомышечных клеток сосудов. Рос. физиол. журн. им. И. М. Сеченова. 2015.101(4):441–450. [Smagliy LV, Gusakova SV, Birulina YG, Kovalev IV, Orlov SN. The role of hydrogen sulfide in volume-dependent mechanisms of regulation of vascular smooth muscle cells contractile activity. Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova = Russian Physiology Journal n. a. I. M. Sechenov. 2015;101(4):441–50. In Russian].

3. Bełtowski J. Hydrogen sulfide in pharmacology and medicine. An Update Pharmacol Rep. 2015;67(3):647–658.

4. Баскаков М. Б., Гусакова С. В., Желудева А. С., Смаглий Л. В., Ковалев И. В., Вторушина Т. А. и др. Влияние сероводорода на сократительную активность гладкомышечных клеток аорты крысы. Бюлл. cиб. мед. 2010;9(6):12–17. [Baskakov MB, Gusakova SV, Zheludeva AS, Smagliy LV, Kovalev IV, Vtorushina TA et al. Effect of hydrogen sulfide on the contractile activity of smooth muscle cells from the rat aorta. Bulleten Sibirskoy Meditsiny = Bulletin of Siberian Medicine. 2010;9(6):12–17. In Russian].

5. Kimura H. Production and physiological effects of hydrogen sulfide. Antioxid Redox Signal. 2014;20(5):783–793.

6. Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. 2012;92(2): 791–896.

7. Sun Y, Tang CS, Du JB, Jin HF. Hydrogen sulfide and vascular relaxation. Chin Med J. 2011;124(22):3816–3825.

8. Di Villa Bianca, Sorrentino ER, Coletta C, Mitidieri E, Rossi A, Vellecco V et al. Hydrogen sulphide induced-dual vascular effect involves arachidonic acid cascade in rat mesenteric arterial bed. J Pharmacol Exp Ther. 2011;337(1):59–64.

9. Bucci M, Papapetropoulos A, Vellecco V, Zhou Z, Pyriochou A, Roussos C et al. Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscl Thromb Vasc Biol. 2010;30 (10):1998–2004.

10. Duan D, Fermini B, Nattel S. Alpha-adrenergic control of volume-regulated Cl 2 currents in rabbit atrial myocytes. Characterization of a novel ionic regulatory mechanism. Circ Res. 1995;77(2):379–393.

11. Zhi L, Ang AD, Zhang H, Moore PK, Bhatia M. Hydrogen sulfide induces the synthesis of proinflammatory cytokines in human monocyte cell line U 937 via the ERK-NF-kB pathway. J Leukoc Biol. 2007;81(5):1322–1332.

12. Ковалев И. В., Баскаков М. Б., Гусакова С. В., Вторушина Т. А., Желудева А. С., Смаглий Л. В. и др. Влияние сероводорода на электрическую и сократительную активность гладкомышечных клеток мочеточника морской свинки. Бюлл. Сиб. Мед. 2012;11(5):51–59. [Kovalyov IV, Baskakov MB, Gusakova SV, Vtorushina TA, Zheludeva AS, Smagliy LV et al. The effect of hydrogen sulfide on electrical and contractile activity of smooth muscle cells in guinea pig ureter. Bulleten Sibirskoy Meditsiny = Bulletin of Siberian Medicine. 2012;11(5):51–59. doi:http://dx.doi.org/10.20538/1682–0363–2012–11–6] In Russian.

13. Orlov SN, Koltsova SV, Tremblay J, Baskakov MB, Hamet P. NKCC1 and hypertension: role in the regulation of vascular smooth muscle contractions and myogenic tone. Ann Med. 2012;44(1): S111–8. doi:10.3109/07853890.2011.653395.

14. Orlov SN, Akimova OA, Koltsova SV, Kapilevich LV, Gusakova SV, Dulin NO. NKCC1 and NKCC2: the pathogenetic role of cation-chloride cotransporters in hypertension. J Gen Dis. 2015;2(2):189–196. doi:10.1016/J. Gendis.2015.02.007

15. Akar F, Skinner E, Klein JD, Jena M, Paul RJ, O’Neill WC. Vasoconstrictors and nitrovasodilators reciprocally regulate the Na+-K+-2Cl–-cotransporter in rat aorta. Am J Physiol. 1999;276 (6 Pt 1):1383–1390.

16. Flagella M, Clarke LL, Miller ML, Erway LC, Giannella RA, Andringa A et al. Mice lacking the basolateral Na-K-2Cl–-cotransporter have impaired epithelial chloride secretion and are profoundly deaf. J Biol Chem. 1999;274(38):26946–26955.

17. Satoh S, Kreutz R, Wilm С, Ganten D. Augmented agonistinduced Ca (2+)-sensitization of coronary artery contraction in genetically hypertensive rats. Evidence for altered signal transduction in the coronary smooth muscle cells. J Clin Invest. 1994;94(4):1397–1403.


Review

For citations:


Nosarev A.V., Birulina Yu.G., Kovalev I.V., Smaglii L.V., Gusakova S.V., Petrova I.V., Rydchenko V.S., Polivshchikova V.A., Medvedev M.A. THE ROLE OF NA+, K+, 2CL–-COTRANSPORT IN THE H2S-DEPENDENT REGULATION OF CONTRACTILE ACTIVITY OF SMOOTH MUSCLE CELLS FROM RAT PULMONARY ARTERY. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2017;23(5):395-402. https://doi.org/10.18705/1607-419X-2017-23-5-395-402

Views: 1414


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)