Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

EFFECT OF OXACOM ON THE RIGHT VENTRICULAR PRESSURE IN RATS WITH MONOСROTALIN-INDUCED PULMONARY ARTERIAL HYPERTENSION

https://doi.org/10.18705/1607-419X-2017-23-5-412-420

Abstract

Background. Pulmonary arterial hypertension (PAH) is a relatively rare disease, but its therapy is expensive and effectiveness is moderate. One of important mechanisms of PAH pathogenesis is reduced formation of nitric oxide in pulmonary vascular endotheliocytes. Objective. To study the effect of oxacom (dinitrosyle iron complex with ligand glutathione), which already demonstrated long-term decline in blood pressure (BP) in systemic circulation, on pressure in pulmonary circulation. Design and method. To induce PAH, the standard monocrotalin rat model was used. Three weeks after monocrotalin introduction (60 mg/kg), a catheterization of the right ventricle was performed in anesthetized rats (100 mg/kg ketamine) through jugular vein and pressure was measured. Simultaneously, BP in femoral artery and ECG were recorded. Results. Systolic pressure in the right ventricle (SPRV) in rats after monocrotalin introduction doubled compared with the control group, from 35 to 70 mmHg, but myocardial contractility index fell by 28 %, also duration of QRS complex and the height of T-wave increased. Intravenous oxacom (40 mg/kg) quickly reduced SPRV by average of 12 ± 3 mmHg, and this level was maintained for an hour. This effect was absent in control rats. Similar BP changes in systemic circulation were observed in both groups. Inhalation of nitric oxide led to BP decrease only in animals with high level of SPRV. Inhalation of oxacom was ineffective. Conclusion. Oxacom is a promising substance for sustained pressure decline in the pulmonary circulation in PAH, but further investigations are needed for the development of a more suitable prolonged-action form of the drug.

About the Authors

A. A. Abramov
National Medical Research Centre in Cardiology.
Russian Federation

Aleksandr A. Abramov, Researcher, Laboratory of Experimental
Heart Pathology, National Medical Research Centre in Cardiology.

Moscow.



V. L. Lakomkin
National Medical Research Centre in Cardiology.
Russian Federation

Vladimir L. Lakomkin, Leading Researcher, Laboratory
of Experimental Heart Pathology, National Medical Research Centre in Cardiology.

Moscow.



A. A. Timoshin
National Medical Research Centre in Cardiology.
Russian Federation

Aleksandr A. Timoshin, Leading Researcher, Laboratory
of Physical and Chemical Investigation Methods, National Medical Research Centre in Cardiology.

Moscow.



E. V. Lukoshkova
National Medical Research Centre in Cardiology.
Russian Federation

Elena V. Lukoshkova, Leading Researcher, Laboratory of Experimental Heart Pathology, National Medical Research Centre in Cardiology.

Moscow.



V. V. Ermishkin
National Medical Research Centre in Cardiology.
Russian Federation

Vladimir V. Ermishkin, Leading Researcher, Laboratory of Experimental Heart Pathology, National Medical Research Centre in Cardiology.

Moscow.



V. I. Kapelko
National Medical Research Centre in Cardiology.
Russian Federation

Valeriy I. Kapelko, Head, Laboratory of Experimental Heart Pathology, National Medical Research Centre in Cardiology.

Moscow.



References

1. McLaughlin V, Shah S, Souza R, Humbert M. Management of pulmonary arterial hypertension. J Am Coll Cardiol. 2015;65 (18): 1976–97.

2. Studer S, Gilkin R. Clinical trial designs in PAH: shifting from functional measurements to long-term clinical outcomes. Am J Manag Care. 2014;20(6 Suppl): S115–122.

3. Stenmark K, McMurtry I. Vascular remodeling versus vaso constriction in chronic hypoxic pulmonary hypertension a time for reappraisal? Circ Res. 2005;97(2):95–8.

4. Voelkel N, Tuder R Hypoxia-induced pulmonary vascular remodeling: a model for what human disease? J Clin Invest. 2000;106(6):733–8.

5. Humbert M, Morrell N, Archer S, Stenmark K, MacLean M, Lang I et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol. 2004;43(12 Supplement): S13–24.

6. Firth A, Mandel J, Yuan JJ. Idiopathic pulmonary arterial hypertension. Dis Model Mech. 2010;3(5–6):268–73.

7. Gomez-Arroyo J, Farkas L, Alhussaini A, Farkas D, Kraskauskas D, Voelkel N et al. The monocrotaline model of pulmonary hypertension in perspective. Am J Physiol — Lung Cell Mol Physiol. 2012;302(4): L363–9.

8. Yildiz P. Molecular mechanisms of pulmonary hypertension. Clin Chim Acta. 2009;403(1–2):9–16.

9. Ahmed L, Obaid A, Zaki H, Agha A. Role of oxidative stress, inflammation, nitric oxide and transforming growth factor-beta in the protective effect of diosgenin in monocrotaline-induced pulmonary hypertension in rats. Eur J Pharmacol. 2014;740:379–87.

10. Lakomkin VL, Vanin AF, Imoshin AA, Kapelko VI, Chazov EI. Long-lasting hypotensive action of stable preparations of dinitrosyl iron complexes with thiol-containing ligands in conscious normotensive and hypertensive rats. Nitric Oxide. 2007;16(4):413–418.

11. Chazov EI, Rodnenkov OV, Zorin AV, Lakomkin VL, Gramovich VV, Vyborov ON et al. Hypotensive effect of “oxacom” containing а dinitrosyl iron complex with glutathione: animal studies and clinical trials in healthy volunteers. Nitric Oxide. 2012;26(3):148–56.

12. Гостеев А. Ю., Зорин А. В., Родненков О. В., Драгнев А. Г., Чазов Е. И. Гемодинамическиеэффекты синтетического аналога эндогенных донаторов оксида азота (II)-препарата динитрозильных комплексов железа у больных артериальной гипертонией с неосложненными гипертоническими кризами. Терапевт. арх. 2014;86(9):49–55. [Gosteev AYu, Zorin AV, Rodnenkov OV, Dragnev AG, Chazov EI. Hemodynamic effects of the synthetic analogue of endogenous nitric oxide (II) donors a dinitrosyl iron complex in hypertensive patients with uncomplicated hypertensive crisis. Ther Arch. 2014;86(9):49–55. In Russian].

13. Hayes B, Will J. Pulmonary artery catheterization in the rat. Am J Physiol. 1978;235(4): H452-H454.

14. Matori H, Umar S, Nadadur R, Sharma S, Partow-Navid R, Afkhami M et al. Genistein, a soy phytoestrogen, reverses severe pulmonary hypertension and prevents right heart failure in rats. Hypertension. 2012;60(2):425–30.

15. Akhavein F, St-Michel E, Seifert E, Rohlicek C. Decreased left ventricular function, myocarditis, and coronary arteriolar medial thickening following monocrotaline administration in adult rats. J Appl Physiol Bethesda Md. 2007;103(1):287–95.

16. Kolettis T, Vlahos A, Louka M, Hatzistergos K, Baltogiannis G, Agelaki M et al. Characterisation of a rat model of pulmonary arterial hypertension. Hell J Cardiol. 2007;48(4):206–210.

17. Ghodsi F, Will J. Changes in pulmonary structure and function induced by monocrotaline intoxication. Am J PhysiolHeart Circ Physiol. 1981;240(2): H149-H155.

18. Hadri L, Kratlian R, Benard L, Maron B, Dorfmüller P, Ladage D et al. Therapeutic efficacy of AAV1.SERCA2a in monocrotaline-induced pulmonary arterial hypertension. Circulation. 2013;128(5):512–23.

19. Kay J, Keane P, Suyama K, Gauthier D. Angiotensin converting enzyme activity and evolution of pulmonary vascular disease in rats with monocrotaline pulmonary hypertension. Thorax. 1982;37(2):88–96.

20. Piao L, Fang Y, Cadete V, Wietholt C, Urboniene D, Toth P et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J Mol Med Berl Ger. 2010;88(1):47–60.

21. Tanaka Y, Takase B, Yao T, Ishihara M. Right ventricular electrical remodeling and arrhythmogenic substrate in rat pulmonary hypertension. Am J Respir Cell Mol Biol. 2013;49 (3):426–36.

22. Pullamsetti S, Kiss L, Ghofrani H, Voswinckel R, Haredza P, Klepetko W et al. Increased levels and reduced catabolism of asymmetric and symmetric dimethylarginines in pulmonary hypertension. FASEB J Off Publ Fed Am Soc Exp Biol. 2005;19(9): 1175–7.

23. Schultze A, Roth R. Chronic pulmonary hypertension — the monocrotaline model and involvement of the hemostatic system. J Toxicol Environ Health Part B. 1998;1(4):271–346.

24. Reid M, Dunston S, Lamé M, Wilson D, Morin D, Segall H. Effect of monocrotaline metabolites on glutathione levels in human and bovine pulmonary artery endothelial cells. Res Commun Mol Pathol Pharmacol. 1998;99(1):53–68.

25. Мартынюк Т. В., Наконечников С. Н., Масенко В. П., Чазова И. Е. Ингаляционный оксид азота: клинические эффекты и влияние на профиль провоспалительных маркеров у пациентов с идиопатической легочной гипертензией. Рациональная фармакотерапия в кардиологии. 2012;8(4): 500–508. [Martynyuk TV, Nakonechnikov SN, Masenko VP, Chazova IE. Inhaled nitric oxide: clinical effects and influence on the profile of inflammatory markers in patients with idiopathic pulmonary hypertension. Ratsional'naya Farmakoterapiya v Kardiologii = Rational Pharmacotherapy in Cardiology. 2012;8 (4):500–508. In Russian].


Review

For citations:


Abramov A.A., Lakomkin V.L., Timoshin A.A., Lukoshkova E.V., Ermishkin V.V., Kapelko V.I. EFFECT OF OXACOM ON THE RIGHT VENTRICULAR PRESSURE IN RATS WITH MONOСROTALIN-INDUCED PULMONARY ARTERIAL HYPERTENSION. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2017;23(5):412-420. https://doi.org/10.18705/1607-419X-2017-23-5-412-420

Views: 1507


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)