Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

MORPHOFUNCTIONAL ALTERATIONS IN ENDOTHELIUM IN THE PATHOGENESIS OF ESSENTIAL HYPERTENSION

https://doi.org/10.18705/1607-419X-2017-23-5-447-456

Abstract

Endothelium is a multilevel cellular structure that permeates all organs and systems of the body. A disorder of the regulation of the arterial tone underlies essential hypertension. However, its pathogenesis basis, despite intense efforts, remains unclear. The unfavorable role of emotional stress, hypodynamia, obesity and disorder of water-salt metabolism is obvious. However, the exact mechanisms and predictors of the development of arterial hypertension (HTN) are not currently defined. This opposes the prevention and detection of essential hypertension at an early stage. The investigation of endothelial function as a target and a predisposing factor for HTN development is promising and implies both scientific and applied clinical significance. Indeed, understanding of pathognomonic endothelial alterations for HTN development will clarify its pathogenesis and will help the development of the adequate treatment protocols. The paper reviews current data on the involvement of endothelial cells (EC) in the development of HTN. The role of lipid disorders in the physiological state of the endothelium is shown. The role of endothelial dysfunction in increasing production of active oxygen species and disorders in the nitric oxide metabolism is highlighted. The activity of the following enzyme is reviewed: NADPH (nicotinamide adenine dinucleotide phosphate) oxidase, cyclooxygenase, xantinoxydoreductase and endothelial NO synthase. The interaction of the endothelium and the extracellular matrix, as well as endothelium and smooth muscle cells, is also given according to the literature data. The role of ghrelin, produced by endothelium, in the regulation of vascular tone is highlighted. Methods of the EC assessment in vitro under hypoxia are presented. Based on the literature review, it is clear that the assessment of the endothelium under hypoxia is highly important, as well as the investigation of the influence of tissue and hemic hypoxia in vivo. These studies will help to establish the contribution of functional endothelial disturbances to the development of HTN.

About the Author

K. A. Sysoev
Almazov National Medical Research Centre; Pavlov Institute of Physiology
Russian Federation

Kirill A. Sysoev, Pavlov Institute of Physiology of the Russian Academy of Sciences; Researcher, Research Department of Coronary Heart Disease, Almazov National Medical Research Centre.

6 Makarov embankment, St Petersburg, 199034.



References

1. Lubrano V, Balzan S. Roles of LOX-1 in microvascular dysfunction. Microvasc Res. 2016;105:132–40. doi:10.1016/j. mvr.2016.02.006

2. Chen M, Masaki T, SawamuraT. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther. 2002;95(1):89–100.

3. Kenney WL, Cannon JG, Alexander LM. Cutaneous microvascular dysfunction correlates with serum LDL and sLOX-1 receptor concentrations. Microvasc Res. 2013;85:112–17. doi:10.1016/j.mvr.2012.10.010

4. Holowatz LA, Santhanam L, Webb A, Berkowitz DE, Kenney WL. Oral atorvastatin therapy restores cutaneous microvascular function by decreasing arginase activity in hypercholesterolaemic humans. J Physiol. 2011;589(Pt 8):2093–103. doi:10.1113/jphysiol.2010.203935

5. García-Redondo AB, Aguado A, Briones AM, Salaices M. NADPH oxidases and vascular remodeling in cardiovascular diseases. Pharmacol Res. 2016;114:110–20. doi:10.1016/j. phrs.2016.10.015

6. Forte M, Nocella C, De Falco E, Palmerio S, Schirone L, Valenti V et al. The pathophysiological role of NOX2 in hypertension and organ damage. High Blood Press Cardiovasc Prev. 2016;23 (4):355–64. doi:10.1007/s40292–016–0175-y

7. Sahoo S, Meijles DN, Pagano PJ. NADPH oxidases: key modulators in aging and age-related cardiovascular diseases? Clin Sci (Lond). 2016;130(5):317–35. doi:10.1042/CS20150087

8. Nurkiewicz TR, Wu G, Li P, Boegehold MA. Decreased arteriolar tetrahydrobiopterin is linked to superoxide generation from nitric oxide synthase in mice fed high salt. Microcirculation. 2010;17(2):147–57. doi:10.1111/j.1549–8719.2009.00014.x

9. Channon KM. Tetrahydrobiopterin: Regulator of endothelial nitric oxide synthase in vascular disease. Trends Cardiovasc Med. 2004;14(8):323–27. doi:10.1016/j.tcm.2004.10.003

10. Dinh QN, Drummond GR, Sobey CG, Chrissobolis S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res Int. 2014;2014:406960. doi:10.1155/ 2014/406960

11. Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev. 2004;56(3):387–437. doi:10.1124/pr.56.3.3

12. Feletou M, Huang Y, Vanhoutte PM. Endotheliummediated control of vascular tone: COX-1 and COX-2 products. Br J Pharmacol. 2011;164(3):894–912. doi:10.1111/j.1476–5381. 2011.01276.x

13. Virdis A, Taddei S. Endothelial dysfunction in resistance arteries of hypertensive humans: old and new conspirators. J Cardiovasc Pharmacol. 2016;67(6):451–57. doi:10.1097/FJC. 0000000000000362

14. Kelley EE. A new paradigm for XOR-catalyzed reactive species generation in the endothelium. Pharmacol Rep. 2015;67 (4):669–74. doi:10.1016/j.pharep.2015.05.004

15. Enroth C, Eger BT, Okamoto K, Nishino T, Nishino T, Pai EF. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: Structure-based mechanism of conversion. Proc Natl Acad Sci USA. 2000;97(20):10723–8.

16. Maia LB, Moura JJ. Nitrite reduction by xanthine oxidase family enzymes: a new class of nitrite reductases. J Biol Inorg Chem. 2011;16(3):443–460. doi:10.1007/s00775–010–0741-z

17. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone releasing acylated peptide from stomach. Nature. 1999;402(6762):656–660. doi:10.1038/45230

18. Kleinz MJ, Maguire JJ, Skepper JN, Davenport AP. Functional and immunocytochemical evidence for a role of ghrelin and des-octanoyl ghrelin in the regulation of vascular tone in man. Cardiovasc Res. 2006;69(1):227–35. doi:10.1016/j. cardiores.2005.09.001

19. Iglesias MJ, Pineiro R, Blanco M, Gallego R, Diéguez C, Gualillo O et al. Growth hormone releasing peptide (ghrelin) is synthesized and secreted by cardiomyocytes. Cardiovasc Res. 2004;62(93):481–488. doi:10.1016/j.cardiores.2004.01.024

20. Tesauro M, Schinzari F, Iantorno M, Rizza S, Melina D, Lauro D et al. Ghrelin improves endothelial function in patients with metabolic syndrome. Circulation. 2005;112(19):2986–92. doi:10.1161/circulationaha.105.553883

21. Kawczynska-Drozdz A, Olszanecki R, Jawien J, Brzozowski T, Pawlik WW, Korbut R et al. Ghrelin inhibits vascular superoxide production in spontaneously hypertensive rats. Am J Hypertens. 2006;19(7):764–7. doi:10.1016/j.amjhyper.2006.01.022

22. Tesauro M, Schinzari F, Rovella V, Di Daniele N, Lauro D, Mores N et al. Ghrelin restores the endothelin 1/nitric oxide balance in patients with obesity-related metabolic syndrome. Hypertension. 2009;54(5):995–1000. doi:10.1161/HYPERTENSIONAHA. 109.137729

23. de Wit C, Griffith TM. Connexins and gap junctions in the EDHF phenomenon and conducted vasomotor responses. Pflugers Arch. 2010;459(6):897–914. doi:10.1007/s00424–010–0830–4

24. Maguire JJ, Skepper JN, Skepper JN, Davenport AP. Functional and immunocytochemical evidence for a role of ghrelin and des-octanoyl ghrelin in the regulation of vascular tone in man. Cardiovasc Res. 2006;69(1):227–235.

25. Félétou M, Vanhoutte PM. Endothelium-dependent hyperpolarizations: past beliefs and present facts. Ann Med. 2007;39 (7):495–516.

26. Chou TC, Yen MH, Li CY, Ding YA. Alterations of nitric oxide synthase expression with aging and hypertension in rats. Hypertension. 1998;31(2):643–8.

27. Kondrashov A, Vrankova S, Dovinová I, Sevčík R, Parohová J, Barta A et al. The effects of new Alibernet red wine extract on nitric oxide and reactive oxygen species production in spontaneously hypertensive rats. Oxid Med Cell Longev. 2012; 2012:806285. doi:10.1155/2012/806285

28. Nava E, Noll G, Luscher TF. Increased activity of constitutive nitric oxide synthase in cardiac endothelium in spontaneous hypertension. Circulation. 1995;91(9):2310–3.

29. Al-Gburi S, Deussen A, Zatschler B, Weber S, Künzel S, El-Armouche A et al. Sex-difference in expression and function of beta-adrenoceptors in macrovessels: role of the endothelium. Basic Res Cardiol. 2017;112(3):29. doi:10.1007/s00395–017–0617–2

30. Caniffi C, Cerniello FM, Gobetto MN, Sueiro ML, Costa MA, Arranz C. Vascular tone regulation induced by C-type natriuretic peptide: differences in endothelium-dependent and independent mechanisms involved in normotensive and spontaneously hypertensive rats. PLoS One. 2016;11(12):e0167817. doi:10.1371/journal.pone.0167817

31. Nakao K, Kuwahara K, Nishikimi T, Nakagawa Y, Kinoshita H, Minami T et al. Endothelium-derived C-type natriuretic peptide contributes to blood pressure regulation by maintaining endothelial integrity. Hypertension. 2017;69(2):286– 296. doi:10.1161/HYPERTENSIONAHA.116.08219

32. Harvey A, Montezano AC, Lopes RA, Rios F, Touyz RM. Vascular fibrosis in aging and hypertension: molecular mechanisms and clinical implications Can J Cardiol. 2016;32(5):659–68. doi:10. 1016/j.cjca.2016.02.070

33. Gutterman DD, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, Ait-Aissa K et al. The human microcirculation. Regulation of flow and beyond. Circ Res. 2016;118(1):157–72. doi:10.1161/CIRCRESAHA.115.305364

34. Fruchart JC. Peroxisome proliferatoractivated receptoralpha (PPARalpha): at the crossroads of obesity, diabetes and cardiovascular disease. Atherosclerosis. 2009;205(1):1–8. doi:10.1016/j.atherosclerosis.2009.03.008

35. Glineur C, Gross B, Neve B, Rommens C, Chew GT, Martin-Nizard F et al. Fenofibrate inhibits endothelin-1 expression by peroxisome proliferator-activated receptor α-dependent and independent mechanisms in human endothelial cells. Arterioscler Thromb Vasc Biol. 2013;33(3):621–8. doi:10.1161/ ATVBAHA.112.300665

36. Jíchová Š, Doleželová Š, Kopkan L, KompanowskaJezierska E, Sadowski J, Červenka L. Fenofibrate attenuates malignant hypertension by suppression of the renin-angiotensin system: a study in Cyp1a1-Ren-2 transgenic rats. Am J Med Sci. 2016;352(6):618–630. doi:10.1016/j.amjms.2016.09.008

37. Kvandová M, Majzúnová M, Dovinová I. The role of PPARgamma in cardiovascular diseases. Physiol Res. 2016;65 (S3): S343-S363.

38. Nauta TD, van den Broek M, Gibbs S, van der Pouw-Kraan TC, Oudejans CB, van Hinsbergh VW et al. Identification of HIF-2αregulated genes that play a role in human microvascular endothelial sprouting during prolonged hypoxia in vitro. Angiogenesis. 2017;20 (1):39–54. doi:10.1007/s10456–016–9527–4

39. Befani C, Liakos P. Hypoxia upregulates integrin gene expression in microvascular endothelial cells and promotes their migration and capillary-like tube formation. Cell Biol Int. 2017;41 (7):769–778.

40. Daiber A, Di Lisa F, Oelze M, Kröller-Schön S, Steven S, Schulz E et al. Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. Br J Pharmacol. 2017;174(12):1670–1689. doi:10.1111/bph.13403

41. Koziel A, Jarmuszkiewicz W. Hypoxia and aerobic metabolism adaptations of human endothelial cells. Pflugers Arch. 2017;469(5–6):815–27. doi:10.1007/s00424–017–1935–9

42. Hernansanz-Agustín P, Ramos E, Navarro E, Parada E, Sánchez-López N, Peláez-Aguado L et al. Mitochondrial complex I deactivation is related to superoxide production in acute hypoxia. Redox Biol. 2017;12:1040–1051. doi:10.1016/j. redox.2017.04.025

43. Biancardi VC, Bomfim GF, Reis WL, Al-Gassimi S, Nunes KP. The interplay between Angiotensin II, TLR4 and hypertension. Pharmacol Res. 2017;120:88–96. doi:10.1016/j.phrs.2017.03.017

44. De Batista PR, Palacios R, Martín A, Hernanz R, Médici CT, Silva MA et al. Toll-like receptor 4 upregulation by angiotensin II contributes to hypertension and vascular dysfunction through reactive oxygen species production. PloS One. 2014;9(8): e104020. doi:10.1371/journal.pone.0104020

45. Bomfim GF, Dos Santos RA, Oliveira MA, Giachini FR, Akamine EH, Tostes RC et al. Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin Sci (Lond). 2012;122(12):535–543. doi:10.1111/bph.13117

46. Hernanz R, Martinez-Revelles S, Palacios R, Martin A, Cachofeiro V, Aguado A et al. Toll-like receptor 4 contributes to vascular remodelling and endothelial dysfunction in angiotensin IIinduced hypertension. Br J Pharmacol. 2015;172(12):3159–3176. doi:10.1111/bph.13117

47. Bomfim GF, Echem C, Martins CB, Costa TJ, Sartoretto SM, Dos Santos RA et al. Toll-like receptor 4 inhibition reduces vas cular inflammation in spontaneously hypertensive rats. Life Sci. 2015;122:1–7. doi:10.1016/j.lfs.2014.12.001

48. McCarthy CG, Wenceslau CF, Goulopoulou S, Ogbi S, Baban B, Sullivan JC et al. Circulating mitochondrial DNA and Toll-like receptor 9 are associated with vascular dysfunction in spontaneously hypertensive rats. Cardiovasc Res. 2015;107(1):119– 130. doi:10.1093/cvr/cvv137

49. Mian MO, Barhoumi T, Briet M, Paradis P, Schiffrin EL. Deficiency of T-regulatory cells exaggerates angiotensin II-induced microvascular injury by enhancing immune responses. J Hypertens. 2016;34(1):97–108. doi:10.1097/HJH.0000000000000761


Review

For citations:


Sysoev K.A. MORPHOFUNCTIONAL ALTERATIONS IN ENDOTHELIUM IN THE PATHOGENESIS OF ESSENTIAL HYPERTENSION. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2017;23(5):447-456. https://doi.org/10.18705/1607-419X-2017-23-5-447-456

Views: 1488


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)