Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

POLYMORPHIC VARIANTS OF G/C+915 TRANSFORMING GROWTH FACTOR BETA 1 AND ATRIAL FIBRILLATION IN PATIENTS WITH METABOLIC SYNDROME

https://doi.org/10.18705/1607-419X-2018-24-1-93-100

Abstract

Objective. Metabolic syndrome (MS) increases the risk of atrial fibrillation (AF). The probability of the incident AF increases in case of atrial fibrosis and remodeling. Transforming growth factor beta 1 (TGF-β1, encoding gene TGFB1) induces myocardial fibrosis, in particular, in the atria. We analyzed the distribution of CC, CG and GG genotypes G/C+915 polymorphism of TGFB1 gene in patients with MS and AF. Design and methods. We included 426 subjects (30–65 years old): 222 patients with MS, including 115 patients with paroxysmal and permanent AF. The control group included 209 healthy individuals without cardiovascular disease and metabolic disorders. Genomic DNA was isolated from the venous blood. Allelic variants were identified by polymerase chain reaction followed by restriction analysis with endonucleases BglI. Results. GG genotype G/C (+915) TGFB1 gene in patients with MS and AF is more frequent than in MS patients without AF (97,4 and 87,9 %, respectively; χ 2 = 6,19, p = 0,013) and in healthy individuals (97,4 and 86,6 %, respectively; χ 2 = 8,77, p = 0,003). GG genotype is associated with an increased the risk of AF in patients with MS (odds ratio (OR): 5,74, 95 % confidence interval (CI): 1,71–19,33, p = 0,012). There were no differences in GG genotype G/C (+915) TGFB1 gene in MS patients without AF and healthy individuals. GC genotype G/C (+915) TGFB1 gene in healthy individuals was found more frequently than in MS with AF (12,4 and 2,6 %, respectively; χ 2 = 7,63, p = 0,006) and more frequently in MS patients without AF (12,1 and 2,6 %, respectively; χ 2 = 6,19, p = 0,013). C allele (genotype GC+CC) gene TGFB1 is associated with the decreased risk of AF in patients with MS (OR = 0,19, 95 % CI 0,05–0,70, р = 0,001). Conclusions. We found an association of G/C (+915) TGFB1 gene with the risk of AF in patients with MS. C allele (СС and CG genotypes) seems to be protective and is associated with the 5,3-fold reduction in the risk of AF in patients with MS. We suggest that increased expression of gene TGFB1 causes heterogeneity of conduction and contributes to the AF in patients with MS.

About the Authors

Yi. Ma
 First Pavlov State Medical University of St. Petersburg.
Russian Federation
Yi Ma, MD, PhD Student, Department of Therapy with the Course of Endocrinology, Cardiology and Functional Diagnostics. St. Petersburg.


V. A. Ionin
 First Pavlov State Medical University of St. Petersburg; Almazov National Medical Research Center.
Russian Federation

Valery A. Ionin, MD, PhD, Assistant, Department of Therapy with the Course of Endocrinology, Cardiology and Functional Diagnostics; Researcher, Laboratory of Metabolic Syndrome. 

St. Petersburg.



E. L. Zaslavskaya
First Pavlov State Medical University of St. Petersburg.
Russian Federation

Ekaterina L. Zaslavskaya, MD, Assistant, Department of Therapy with the Course of Endocrinology, Cardiology and Functional Diagnostics.

St. Petersburg.



A. S. Ulitina
First Pavlov State Medical University of St. Petersburg; B. P. Konstantinov Petersburg Nuclear Physics Institute  National Research Center “Kurchatov Institute”.
Russian Federation

Anna S. Ulitina, PhD, Senior Researcher, Department of Molecular, Genetic and Nanobiotechnologies; Senior Researcher, Laboratory for Human Molecular Genetics.

St. Petersburg.



A. Panteleeva
First Pavlov State Medical University of St. Petersburg; B. P. Konstantinov Petersburg Nuclear Physics Institute  National Research Center “Kurchatov Institute”.
Russian Federation
Aleksandra A. Panteleeva, Junior Researcher, Department of Molecular, Genetic and Nanobiotechnologies; Junior Researcher, Laboratory for Human Molecular Genetics.St. Petersburg.


O. D. Belyaeva
 First Pavlov State Medical University of St. Petersburg; Almazov National Medical Research Center.
Russian Federation

Olga D. Belyaeva, MD, PhD, DSc, Professor, Department of Therapy with the Course of Endocrinology, Cardiology and Functional Diagnostics, Head, Laboratory of Hypertension, Research Institution for Cardiovascular Diseases, Research Medical Scientific Centre;  Leading Researcher, Laboratory of Metabolic Syndrome.

St. Petersburg.



S. N. Pchelina
First Pavlov State Medical University of St. Petersburg; B. P. Konstantinov Petersburg Nuclear Physics Institute  National Research Center “Kurchatov Institute”.
Russian Federation

Sofia N. Pchelina, Doctor of Biology Science, Acting Chief, Department of Molecular, Genetic and Nanobiotechnologies; Head, Laboratory for Human Molecular Genetics.

St. Petersburg.



E. I. Baranova
 First Pavlov State Medical University of St. Petersburg; Almazov National Medical Research Center.
Russian Federation

Elena I. Baranova, MD, PhD, DSc, Professor, Department of Therapy with the Course of Endocrinology, Cardiology and Functional Diagnostics, Director, Research Institution for Cardiovascular Diseases, Research Medical Scientific Centere; Chief, Laboratory of Metabolic Syndrome.

St. Petersburg.



References

1. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B et al. ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37(38):2893–2962.

2. Dzeshka MS, Lip GY, Snezhitskiy V, Shantsila E. Cardiac fibrosis in patients with atrial fibrillation: mechanisms and clinical implications. J Am Coll Cardiol. 2015;66(8):943–959.

3. Aune D, Sen A, Schlesinger S, Norat T, Janszky I, Romundstad P et al. Body mass index, abdominal fatness, fat mass and the risk of atrial fibrillation: a systematic review and doseresponse meta-analysis of prospective studies. Eur J Epidemiol. 2017;32(3):181–192.

4. Chamberlain AM, Agarwal SK, Folsom AR, Soliman EZ, Chambless LE, Crow R et al. A clinical risk score for atrial fibrillation in a biracial prospective cohort (from the Atherosclerosis Risk in Communities [ARIC study]. Am J Cardiol. 2011;107(1):85–91.

5. Кускаева А. В., Никулина С. Ю., Чернова А. А., Аксютина Н. В. Генетические предикторы фибрилляции предсердий. Рациональная фармакотерапия в кардиологии. 2016;12(3):331–336] [Kuskaeva AV, Nikulina S Yu, Chernova AA, Aksutina NV. Genetic predictors of atrial fibrillation. Rational Pharmacotherapy in Cardiology. 2016;12(3): 331–336. In Russian].

6. Christophersen IE, Rienstra M, Roselli C, Yin X, Geelhoed B, Barnard J et al. Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. J Nat Genet. 2017;49(6):946–952.

7. Lubitz SA, Yin X, Lin HJ, Kolek M, Smith JG, Trompet S et al. Genetic risk prediction of atrial fibrillation clinical perspective. Circulation. 2017;135(14):1311–1320.

8. Fox CS, Parise H, D’Agostino RB Sr, Lloyd-Jones DM, Vasan RS, Wang TJ et al. Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. JAMA. 2004;291(23):2851–2855.

9. Olesen MS, Nielsen MW, Haunsø S, Svendsen JH. Atrial fibrillation: the role of common and rare genetic variants. European J of Human Genetics. 2014;22(3):297–306.

10. Corradi D. Atrial fibrillation from the pathologist’s perspective. Cardiovasc Pathol. 2014;23(2):71–84.

11. Lau D H, Schotten U, Mahajan R, Antic NA, Hatem SN, Pathak RK et al. Novel mechanisms in the pathogenesis of atrial fibrillation: practical applications. Eur Heart J. 2015;37(20): 1573–1581.

12. Verheule S, Sato T, Everett T, Engle SK, Otten D, Rubart-von der Lohe M et al. Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-β1. Circ Res. 2004;94(11):1458–1465.

13. Xu HY, Hou XW, Wang LF, Wang NF, Xu J. Association between transforming growth factor β1 polymorphisms and left ventricle hypertrophy in essential hypertensive subjects. Molecular and cellular biochemistry. 2010;335(1–2):13–17.

14. Barsova RM, Titov BV, Matveeva NA, Favorov AV, Sukhinina TS, Shahnovich RM et al. Contribution of the TGFB1 gene to myocardial infarction susceptibility. Act Naturae. 2012;4(2):74–79.

15. Titov BV, Matveeva NA, Martynov MY, Favorova OO. Multilocus analysis of the association of polymorphic variants of inflammation genes with ischemic stroke in Russians. Mol Biol (Mosk). 2016;50(4):674–684.

16. Cebinelli GCM, Trugilo KP, Garcia SB, Brajao de Oliveira K. TGF-β1 functional polymorphisms: a review. Eur Cytokine Netw. 2016;27(4):81–89.

17. Zheng W, Yan C, Wang X, Luo Z, Chen F, Yang Y et al. The TGFB1 functional polymorphism rs1800469 and susceptibility to atrial fibrillation in two Chinese Han populations. PloS One. 2013;8(12): e83033.

18. Wang Y, Hou X, Li Y. Association between transforming growth factor β1 polymorphisms and atrial fibrillation in essential hypertensive subjects. J Biomed Sci. 2010;17(1):23.

19. Маниатис Т., Фрич Э., Сэмбрук Д. Методы генетической инженерии. Молекулярное клонирование. М.: Мир, 1984. 480 c. [Maniatis T, Fritsch E, Sembroke D. Methods of genetic engineering. Molecular Cloning. M.: Mir, 1984. 480 p. In Russian].

20. Lahiri DK, Bye S, Nurnberger JI, Hodes ME, Crisp M. A non-organic and non-enzymatic extraction method gives higher yeilds of genomic DNA from whole-blood samples then do nine other methods tested. J Biochem Biophys Methods.1992;25 (4):193–205.

21. Hosseini Razavi A, Azimzadeh P, Mohebbi SR, Hosseini SM, Romani S, Khanyaghma M et al. Lack of association between transforming growth factor Beta 1–509C/T and+ 915G/C polymorphisms and chronic hepatitis B in Iranian patients. Hepatitis Monthly. 2014;14(4): e13100.

22. Lubitz SA, Yin X, Lin HJ, Kolek M, Smith JG, Trompet S et al. Genetic risk prediction of atrial fibrillation clinical perspective. Circulation. 2017;135(14):1311–1320.

23. Bapat A, Anderson CD, Ellinor P, Lubits SA. Genomic basis of atrial fibrillation. Heart. 2018;104(3):201–206.

24. Verheule S, Sato T, Everett T, Engle SK, Otten D, Rubart-von der Lohe M et al. Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-β1. Circ Res. 2004;94(11):1458–1465.

25. On YK, Jeon ES, Lee SY, Shin DH, Choi JO, Sung J et al. Plasma transforming growth factor β1 as a biochemical marker to predict the persistence of atrial fibrillation after the surgical maze procedure. J Thorac Cardiovas Surg. 2009;137(6):1515–1520.

26. Bank S, Skytt Andersen P, Burisch J, Pedersen N, Roug S,

27. Galsgaard J et al. Polymorphisms in the inflammatory pathway genes TLR2, TLR4, TLR9, LY96, NFKBIA, NFKB1, TNFA, TNFRSF1A, IL6R, IL10, IL23R, PTPN22, and PPARG are associated with susceptibility of inflammatory bowel disease in a Danish cohort. PLoS ONE, 9(6), e98815.

28. Aziz TM, Burgess M, Hasleton PS, Yonan N, Deiraniya AK, Hutchinson IV. Transforming growth factor-beta: association with arteriosclerosis and left ventricular dysfunction after heart transplantation. Transplant Proc. 2001;33(3):2334–2336.

29. Li J, Yang Y, Ng CY, Zhang Z, Liu T, Li G. Association of plasma transforming growth factor-β1 levels and the risk of atrial fibrillation: a meta-analysis. 2014. PLoS One. 2016;11(5): e0155275.

30. Bielecka-Dabrowa A, Sakowicz A, Pietrucha T, Misztal M, Chruściel P, Rysz J et al. The profile of selected single nucleotide polymorphisms in patients with hypertension and heart failure with preserved and mid-range ejection fraction. Sci Rep. 2017;7 (1):8974.


Review

For citations:


Ma Y., Ionin V.A., Zaslavskaya E.L., Ulitina A.S., Panteleeva A., Belyaeva O.D., Pchelina S.N., Baranova E.I. POLYMORPHIC VARIANTS OF G/C+915 TRANSFORMING GROWTH FACTOR BETA 1 AND ATRIAL FIBRILLATION IN PATIENTS WITH METABOLIC SYNDROME. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2018;24(1):93-100. (In Russ.) https://doi.org/10.18705/1607-419X-2018-24-1-93-100

Views: 1242


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)