Lipids in preeclampsia: pathogenic parallels to atherosclerosis
https://doi.org/10.18705/1607-419X-2020-26-2-163-169
Abstract
Preeclampsia (PE) is one of the most common and serious complications of pregnancy. In women with a history of PE the risk of cardiovascular disease is increased, and atherosclerosis can be induced even during fetal development. The exact mechanisms by which PE increases future cardiovascular risk are unknown, although multiple similarities between mechanisms responsible for cardiovascular disease and PE are reported. Risk factors for PE, such as obesity, insulin resistance, thrombophilia, changes in the lipid spectrum are similar to those for atherosclerosis, which allows us to compare these two conditions to clarify the specifics and is important for understanding the pathogenesis of both pathologies. PE, as well as atherosclerosis, manifests as endothelial dysfunction, abnormal immune function, oxidative stress, activation of inflammation, changes in lipid metabolism. Recent studies have provided a broader understanding of the problem, although there are still many open questions. The etiology and pathogenesis of these diseases, their possible relationship are not fully understood. The article provides a summary of possible common mechanisms of PE and atherosclerosis.
About the Authors
V. I. ShcherbakovRussian Federation
Vladimir I. Shcherbakov - MD, PhD, DSc, Research Fellow, Immunology Laboratory.
2 Timakov street, Novosibirsk, 630117
Ya. V. Polonskaya
Russian Federation
Yana V Polonskaya - Doctor of Biology Sciences, Senior Researcher, Laboratory of Clinical Biochemical and Hormonal Studies of Therapeutic Diseases
E. V. Kashtanova
Russian Federation
Elena V Kashtanova - Doctor of Biology Sciences, Professor, Chair of Engineering Problems of Ecology
A. V. Shirinskaya
Russian Federation
Anna V. Shirinskaya - MD, Obstetrician-Gynecologist
References
1. Walsh SK, English FA, Johns EJ, Kenny LC. Plasma-mediated vascular dysfunction in the reduced uterine perfusion pressure model of preeclampsia: a microvascular characterization. Hypertension. 2009;54(2):345-351. doi:10.1161/HYPERTENSIONAHA.109.132191
2. Jim B, Karumanchi SA. Preeclampsia: pathogenesis, prevention and long-term complications. Semin Nephrol. 2017;37(4):386-397. doi:10.1016/j.semnephrol.2017.05.011
3. Warrington IP, George EM, Palei AC, Spradley FT, Granger IP. Recent advances in the understanding of the pathophysiology of preeclampsia. Hypertension. 2013;62(4):666-673. doi:10.1161/HYPERTENSIONAHA
4. Roberts JM, Balk JL, Bodnar LM, Belizan JM, Bergel E, Martinez A. Nutrient involvement in preeclampsia. J Nutr. 2003;133(5):1684S-1692S. doi:10.1093/jn/133.5.1684S
5. Mistry HD, KurlakLO, MansourYT, ZurkindenL, MohauptMG, Escher G. Increased maternal and fetal cholesterol efflux capacity and placental CYP27A1 expression in preeclampsia. J Lipid Res. 2017;58(6):1186-1195. doi:10.1194/jlr.M071985
6. Staff AC, Dechend R, Pijnenborg R. Learning from the placenta: acute atherosis and vascular remodeling in preeclampsia-novel aspects for atherosclerosis and future cardiovascular health. Hypertension. 2010;56(6):1026-1034. doi:10.1161/HYPERTENSIONAHA.110.157743
7. Kim YM, Chaemsaithong P, Romero R, Shaman M, Kim CJ, Kim JS et al. Placental lesions associated with acute atherosis. J Matern Fetal Neonatal Med. 2015;28(13):1554-1562. doi:10.3109/14767058.2014.960835
8. Kim Y, Kim YM. Acute atherosis of the uterine spiral arteries: clinicopathologic implications. J Pathol Transl Med. 2015;49(6):462-471. doi:10.4132/jptm.2015.10.23
9. Ananth CV, Smulian JC, Vintzileos AM. Ischemic placental disease: maternal versus fetal clinical presentations by gestational age. J Matern Fetal Neonatal Med. 2010;23(8):887-893. doi:10.3109/14767050903334885
10. Mach F, Sauty A, Iarossi AS, Sukhova GK, Neote K, Libby P et al. Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. J Clin Invest. 1999;104(8):1041-1050. doi:10.1172/JCI6993
11. Kim CJ, Romero R, Kusanovic IP, Yoo W, Dong Z, Topping V et al. The frequency, clinical significance, and pathological features of chronic chorioamnionitis: a lesion associated with spontaneous preterm birth. Mod Pathol. 2010;23(7):1000-1011. doi:10.1038/modpathol.2010.73
12. Staff AC, Ranheim T, Halvorsen B. Augmented PLA2 activity in pre-eclamptic decidual tissue-a key player in the pathophysiology of ‘acute atherosis in pre-eclampsia? Placenta. 2003;24(10):965-973.
13. Gohil JT, Patel PK, Gupta Р Estimation of lipid profile in subjects of preeclampsia. J Obstet Gynaecol India. 2011;61(4):399-403. doi:10.1007/s13224-011-0057-0
14. Demir B, Demir S, Atamer Y, Guven S, AtamerA, Kocyigit Y et al. Serum levels of lipids, lipoproteins and paraoxonase activity in pre-eclampsia. J Int Med Res. 2011;39(4):1427-1431. doi:10.1177/147323001103900430
15. Belo L, Caslake M, Gaffney D, Santos-Silva A, Pereira-Leite L, Quintanilha A et al. Changes in LDL size & HDL concentration in normal and preeclamptic pregnancies. Atherosclerosis. 2002;162(2):425-432. doi:10.1016/S0021-9150(01)00734-1
16. Labarrere CA, DiCarlo HL, Bammerlin E, Hardin JW, Kim YM, Chaemsaithong P et al. Failure of physiologic transformation of spiral arteries, endothelial and trophoblast cell activation, and acute atherosis in the basal plate of the placenta. Am J Obstet Gynecol. 2017;216(3):287.e1-287.e16. doi:10.1016/j.ajog.2016.12.029
17. Bartels А, O’Donoghue K. Cholesterol in pregnancy: a review ofknowns and unknowns. Obstet Med. 2011;4(4):147-151. doi:10.1258/om.2011.110003
18. Gratacos E, Casals E, Gomez O, Llurba E, Mercader I, Cararach V et al. Increased susceptibility to low density lipoprotein oxidation in women with a history of pre-eclampsia. BJOG. 2003;110(4):400-404.
19. Hansson GK. Inflammatory mechanisms in atherosclerosis. J Thromb. Haemost. 2009;7(1): S 328-S 331. doi:10.1111/j.1538-7836.2009.03416.x
20. Harmon AC, Cornelius DC, Amaral LM, Faulkner JL, Cunningham MW, Wallace K et al. The role of inflammation in the pathology of preeclampsia. Clin Sci. 2016;130(6):409-419. doi:10.1042/CS 20150702
21. Ning F, Liu H, Lash GE. The role of decidual macrophages during normal and pathological pregnancy. Am J Reprod Immunol. 2016;75(3):298-309. doi:10.1111/aji.12477
22. Huang SJ, Chen CP, Schatz F, Rahman M, Abrahams VM, Lockwood CJ. Pre-eclampsia is associated with dendritic cell recruitment into the uterine deciduas. J Pathol. 2008;214(3):328-336. doi:10,1002/path.2257
23. Yang X, Haghiac M, Glazebrook P, Minium J, Catalano PM, Hauguel-de-Mouzon S. Saturated fatty acids enhance TLR 4 immune pathways in human trophoblasts. Hum Reprod. 2015;30(9):2152-2159. doi:10.1093/humrep/dev173
24. Hering L, Herse F, Verlohren S, Park JK, Wellner M, Qadri F et al. Trophoblasts reduce the vascular smooth muscle cell proatherogenic response. Hypertension. 2008;51(2):554-559. doi:10.1161/HYPERTENSIONAHA.107.102905
25. Chen CW, Jaffe IZ, Karumanchi SA. Pre-eclampsia and cardiovascular disease. Cardiovasc Res. 2014;101(4):579-586. doi:10.1093/cvr/cvu018
26. McDonald SD, Malinowski A, Zhou Q, Yusuf S, Deve-reaux P. Cardiovascular sequelae of preeclampsia/eclampsia: a systematic review and meta-analyses. JAm Heart J. 2008;156(5):918-930. doi:10.1016/j.ahj.2008.06.042.
27. Roth A, Elkayam U. Acute myocardial infarction associated with pregnancy. J Am Coll Cardiol. 2008;52(3):171-180. doi:10.1016/j.jacc.2008.03.049
28. Goharkhay N, Tamayo EH, Yin H, Hankins GD, Saade GR, Longo M. Maternal hypercholesterolemia leads to activation of endogenous cholesterol synthesis in the offspring. Am J Obstet Gynecol. 2008;199(3):273. doi:10.1016/j.ajog.2008.06.064
29. Palinski W, Napoli C. The fetal origins of atherosclerosis: maternal hypercholesterolemia, and cholesterol-lowering or antioxidant treatment during pregnancy influence in utero programming and postnatal susceptibility to atherogenesis. FASEB J. 2002;16(11):1348-1360. doi:10,1096/fj.02-0226rev
30. Stojanovska V, Scherjon SA, Plosch T. Preeclampsia as modulator of offspring health. Biol Reprod. 2016;94(3):53. doi:10.1095/biolreprod.115.135780
31. Shcherbakov VI, Ryabichenko TI, Skosyreva GA, Trunov AN. Mechanisms of fetal programming of obesity in children. Russian Bulletin of Perinatology and Pediatrics. 2013;58(5):8-14. In Russian.
32. Edison RJ, Berg K, Remaley A, Kelley R, Rotimi C, Stevenson RE et al. Adverse birth outcome among mothers with low serum cholesterol. Pediatrics. 2007;120(4):723-733. doi:10.1542/peds.2006-1939
33. Madsen EM, Lindegaard ML, Andersen CB, Damm P, Nielsen LB. Human placenta secretes apolipoprotein B-100-containing lipoproteins. J Biol Chem. 2004;279(53):55271-55276. doi:10.1074/jbc.M411404200
34. Leiva A, de Medina CD, Salsoso R, Saez T, San Martin S, Abarzua F et al. Maternal hypercholesterolemia in pregnancy associates with umbilical vein endothelial dysfunction: role of endothelial nitric oxide synthase and arginase II. Arterioscler Thromb Vasc Biol. 2013;33(10):2444-2453. doi:10.1161/ATVBAHA.113.301987
35. Napoli C, D’Armiento FP, Mancini FP, Postiglione A, Witztum JL, Palumbo G et al. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest. 1997;100(11):2680-2690. doi:10.1172/JCI119813
36. Lisowska M, Pietrucha T, Sakowicz A. Preeclampsia and related cardiovascular risk: common genetic background. Curr Hypertens Rep. 2018;20(8):71. doi:10.1007/s11906-018-0869-8
Review
For citations:
Shcherbakov V.I., Polonskaya Ya.V., Kashtanova E.V., Shirinskaya A.V. Lipids in preeclampsia: pathogenic parallels to atherosclerosis. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2020;26(2):163-169. (In Russ.) https://doi.org/10.18705/1607-419X-2020-26-2-163-169