MARcKS and nAP-22 proteins mRnA expression in renal cortex and renal medulla of rats with spontaneous hypertension
https://doi.org/10.18705/1607-419X-2018-24-4-435-440
Abstract
Objective. To study the changes in mRNA expression level of two main protein kinase C substrates — MARCKS and NAP-22 — in rats with spontaneous hypertension (SHR rats) and in normotensive control rats (WKY rats) in renal cortex, renal medulla and total kidney. We also aimed at the identification of possible interstrain differences between the mRNA expression levels. Design and methods. We assessed the level of MARCKS and NAP-22 mRNA by real-time polymerase chain reaction in male SHR and WKY (as a normotensive control) rats. Results. In SHR rats, MARCKS mRNA expression level in renal cortex was 1,5 times higher than in renal medulla (p = 0,0001) and also higher than in total kidney (p = 0,001), in renal medulla it was lower than in total kidney (p = 0,002). In WKY rats, MARCKS mRNA expression level in renal cortex was higher than in renal medulla (p = 0,0005). There was no differences neither between renal cortex and total kidney (p = 0,011), nor between renal medulla and total kidney (p = 0,716). In SHR rats, NAP-22 mRNA expression level in renal cortex was twofold higher than in renal medulla (p = 0,001), in renal medulla it was lower than in total kidney (p = 0,005), the differences between renal cortex and total kidney were less significant (p = 0,011). In WKY rats, NAP-22 mRNA expression level in renal cortex was 1,5 times higher than in renal medulla (p = 0,001), while in renal medulla it was lower than in total kidney (p = 0,002). There was no significant difference in NAP-22 mRNA expression level between renal medulla and total kidney (p = 0,011). There were no significant interstrain differences in the animal groups either in the levels of MARCKS mRNA expression in renal cortex (p = 0,872), in renal medulla (p = 0,024) or in total kidney (p = 0,520). Neither there were differences in the levels of NAP-22 mRNA expression in cortex (p = 0,028), in medulla (p = 0,028) and in total kidney (p = 0,978). Conclusions. In both SHR and WKY rat strains, the level of MARCKS and NAP-22 mRNA expression in cortical and medullary kidney layers is different, in WKY rats these differences are less pronounced. At the same time, interstrain differences in NAP-22 and MARCKS mRNA expression levels in cortical, medullary layers and in total kidney of SHR and WKY rats were not found.
About the Authors
A. S. AldekeevaRussian Federation
Junior Researcher, Experimental Cardiology Group, Pavlov Institute of Physiology Russian Academy of Sciences, Junior Research, Laboratory of Methods and Instruments for Genetic and Immunoassay Analysis, Institute for Analytical Instrumentation of the Russian Academy of Sciences.
Pavlov Institute of Physiology, 6 Makarov emb., St Petersburg, 199034 Russia
Y. S. Kraynova
Russian Federation
Junior Researcher, Experimental Cardiology Group
6 Makarov emb., St Petersburg, 199034 RussiaE. D. Rudenko
Russian Federation
Junior Researcher, Experimental Cardiology Group
6 Makarov emb., St Petersburg, 199034 Russia
N. Z. Klyueva
Russian Federation
PhD in Biology Sciences, Senior Researcher, Experimental Cardiology Group
6 Makarov emb., St Petersburg, 199034 Russia.
E-mail: KluevaNZ@infran.ru, natklueva@mail.ru
References
1. Клюева Н. З., Руденко Е. Д., Альдекеева А. С., Плеханов А. Ю., Чернышев Ю. И., Антонова О. С. Влияние солевой нагрузки на уровень обмена белка NAP 22 — мажорного субстрата протеинкиназы С — в гиппокампе и теменной коре крыс со спонтанной гипертензией. Артериальная гипертензия. 2017;23(4):325–331. doi:10.18705/1607-419X-2017-23-4-325-331 [Klyueva NZ, Rudenko ED, Aldekeeva AS, Plekhanov AY, Chernyshev YI, Antonova OS. Metabolism of the major protein kinase C substrate NAP-22 in hippocampus and parietal cortex of spontaneously-hypertensive rats: the impact of dietary salt load. Arterial’naya Gipertenziya = Arterial Hypertension. 2017;23 (4):325–331. doi:10.18705/1607-419X-2017-23-4-325-331. In Russian].
2. Плеханов А. Ю., Антонова О. С., Петрова Е. И., Резник С. Я., Клюева Н. З. Изменения обмена регуляторного белка мозга NAP-22 у крыс со спонтанной гипертензией и крыс линии WKY на ранних этапах постнатального онтогенеза, рожденных и выращенных самками при дефиците экзогенного кальция. Доклады Aкадемии наук. 2013;452(2):233–237. [Plekhanov AYu, Antonova OS, Petrova EI, Reznik SYa, Klyueva NZ. Changes in the metabolism of the regulatory brain protein NAP-22 in spontaneously hypertensive rats and WKY rats in early postnatal period born and brought up in the environment with exogenous calcium deficiency. Reports of the Academy of Sciences. 2013;452(2):233–237. In Russian].
3. Segura-Chama P, López-Bistrain P, Pérez-Armendáriz EM, Jiménez-Pérez N, Millán-Aldaco D, Hernández-Cruz A. Enhanced Ca2+-induced Ca2+ release from intracellular stores contributes to catecholamine hypersecretion in adrenal chromaffin cells from spontaneously hypertensive rats. Pflügers Archiv — Eur J Physiol. 2015;467(11):2307–2323.
4. Ruilope LM, Rodicio JL. The kidney in arterial hypertension. Nephrol Dialysis Transpl. 2001;16(suppl 1):50–52.
5. Brudvig JJ, Weimer JM. X MARCKS the spot: myristoylated alanine-rich C kinase substrate in neuronal function and disease. Front Cell Neurosci. 2015;9:407. doi:10.3389/fncel.2015.00407
6. Mosevitsky M, Silicheva I. Subcellular and regional location of “brain” proteins BASP1 and MARCKS in kidney and testis. Acta Histochemica. 2011;113(1):13–18.
7. Клюева Н. З., Руденко Е. Д., Альдекеева А. С., Плеханов А. Ю., Корнева Н. А., Петрова Е. И. Влияние повышенного потребления NaCl на уровень обмена белков NAP-22 и MARCKS — мажорных субстратов протеинкиназы-C в почках крыс со спонтанной гипертензией. Артериальная гипертензия. 2017;23(6):574–580. doi:10.18705/1607-419X-2017-23-6-574-580 [Klyueva NZ, Rudenko ED, Aldekeeva AS, Plekhanov AY, Korneva NA, Petrova EI. The impact of high salt consumption on the renal metabolism of NAP-22 and MARCKS, major protein kinase C substrates, in spontaneously hypertensive rats. Arterial’naya Gipertenziya = Arterial Hypertension. 2017;23(6):574–580. doi:10.18705/1607–419X-2017-23-6-574-580 In Russian].
8. Caroni P. Actin cytoskeleton regulation through modulation of PI (4, 5) P2 rafts. EMBO J. 2001;20(16):4332–4336.
9. Baumann M, van Essen H, Hermans JR, Smits JF, StruijkerBoudier HA. Functional and structural postglomerular alterations in the kidney of prehypertensive spontaneously hypertensive rats. Clinical and Experimental Hypertension. 2004;26(7–8):663–672.
10. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C (T) method. Nat Protoc. 2008;3(6):1101–1108.
11. Laux T, Fukami K, Thelen M, Golub T, Frey D. Caroni GAP43, MARCKS and CAP23 modulate PI (4, 5) P2 at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol. 2000;149(7):1455–1472.
12. Mosevitsky MI. Nerve ending “signal” proteins GAP-43, MARCKS and BASP1. Intern Rev Cytol. 2005;245:245–325.
13. Chen CH, Fong LWR, Yu E, Wu R, Trott JF, Weiss RH. Upregulation of MARCKS in kidney cancer and its potential as a therapeutic target. Oncogene. 2017;36(25):3588.
14. Ohsawa S, Watanabe T, Katada T, Nishina H, Miura M. Novel antibody to human BASP1 labels apoptotic cells post-caspase activation. Biochem Biophys Res Communications. 2008;371 (4):639–643.
15. Shandilya J, Roberts SGE. A role of WT1 in cell division and genomic stability. Cell Cycle. 2015;14(9):1358–1364.
16. Sanchez-Nino MD, Fernandez-Fernandez B, PerezGomez MV, Poveda J, Sanz AB, Cannata-Ortiz P et al. Albumininduced apoptosis of tubular cells is modulated by BASP1. Cell Death Dis. 2015;6(2):e1644.
Review
For citations:
Aldekeeva A.S., Kraynova Y.S., Rudenko E.D., Klyueva N.Z. MARcKS and nAP-22 proteins mRnA expression in renal cortex and renal medulla of rats with spontaneous hypertension. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2018;24(4):435-440. (In Russ.) https://doi.org/10.18705/1607-419X-2018-24-4-435-440