Biomarkers of kidney injury in hypertension: conventional versus novel
https://doi.org/10.18705/1607-419X-2018-24-2-223-236
Abstract
Objective. The aim of the present study was to compare conventional and novel, potentially earlier biomarkers of kidney injury in patients with different severity and duration of arterial hypertension (HTN) and healthy controls. Design and methods. Urine levels of neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule‑1 (KIM‑1), liver fatty-acid binding protein (L‑FABP), albuminuria and serum levels of cystatin C and creatinine were measured in 92 hypertensive patients (46 male, mean age 50,7 ± 12,2 years) and 34 healthy control subjects (16 male, mean age 49,9 ± 11,4 years). Hypertensive patients were divided into four age- and sex-matched groups according to HTN severity: 1st grade (n = 24), 2nd grade (n = 26), 3rd grade (n = 17) and resistant hypertension (n = 25). Glomerular filtration rate (GFR) was estimated by the level of serum creatinine and cystatin C by MDRD and CKD-EPI formulas. Instrumental examination included measuring office blood pressure (BP), 24‑hour ambulatory BP monitoring (ABPM, SpaceLabs 90207), applanation tonometry (SphygmoCor, Artcor Medical) with the calculation of central aortic pressure. Results. As compared to healthy control subjects, hypertensive patients were characterized by higher creatinine and albuminuria levels, and lower GFR, however, creatinine levels remained within the normal range despite the increase in the severity of HTN. Levels of albuminuria increased only in patients with severe HTN. Also as compared to healthy controls, HTN patients had significantly higher levels of cystatin C, which already was found in patients with 1st and 2nd stages of HTN, which occurs more often than an increase of creatinine and albuminuria levels. Patients with HTN had significantly lower sCys-estimated GFR and creatinine-sCys-estimated GFR. In HTN patients these biomarkers were associated with office systolic BP (SBP), central aortic systolic and diastolic (CAP) and mean 24‑hour BP level. There were no differencesin NGAL, KIM‑1 levels between the groups, however, KIM‑1 levels were associated with office SBP, mean daily 24‑hour of diastolic BP (DBP) and systolic and diastolic CAP in patients with severe HTN. At the same time, as compared with healthy controls, patients with initial HTN were characterized by higher levels of urine L‑FABP and its concentration increased in patients with severe HTN. In addition, L‑FABP levels were associated with office SBP and DBP, mean 24‑hour BP and systolic and diastolic CAP. Conclusions. The simultaneous assessment of creatinine and cystatin C levels, and the calculation of GFR using the formula CKD-EPI seems to be more accurate method for CKD stage classification in general and, in particular, in hypertensive patients; in hypertensive patients L‑FABP appears to be earlier biomarker of kidney injury, reflecting the progression of tubulointerstitial injury.
About the Authors
S. A. MironovaRussian Federation
MD, PhD, Student, Department for Arterial Hypertension
Yu. S. Yudina
Russian Federation
MD, PhD, Student, Department for Arterial Hypertension
M. V. Ionov
Russian Federation
MD, PhD, Student, Department for Arterial Hypertension, Almazov National Medical Research Centre; Junior Researcher, Translational Medicine Institute of the ITMO University
N. G. Avdonina
Russian Federation
MD, Senior Researcher, Department for Arterial Hypertension, Department for Arterial Hypertension
I. V. Emelyanov
Russian Federation
MD, PhD, Senior Researcher, Department for Arterial Hypertension, Department for Arterial Hypertension
E. Yu. Vasil’eva
Russian Federation
Head, Central Clinical and Diagnostic Laboratory
N. E. Zvartau
Russian Federation
MD, PhD, Senior Researcher, Department for Arterial Hypertension, Department for Arterial Hypertension, Almazov National Medical Research Centre, Senior Researcher, Translational Medicine Institute, ITMO University
A. O. Konradi
Russian Federation
MD, PhD, DSc, Professor, Head, Department for Arterial Hypertension, Deputy General Director on Research, Almazov National Medical Research Centre, Director, Translational Medicine Institute, ITMO University
References
1. Haroun MK, Jaar BG, Hoffman SC, Comstock GW, Klag MJ, Coresh J. Risk factors for chronic kidney disease: a prospective study of 23,534 men and women in Washington County, Maryland. J Am Soc Nephrol. 2003;14(11):2934–2941.
2. Segura J, Campo C, Gil P, Roldán C, Vigil L, Rodicio JL et al. Development of chronic kidney disease and cardiovascular prognosis in essential hypertensive patients. J Am Soc Nephrol. 2004;15(6):1616–1622.
3. Oshchepkova EV, Dolgusheva IuA, Zhernakova IuV, Chazova IE, Shal’nova SA, Iarovaia EB et al. The prevalence of renal dysfunction in arterial hypertension (in the framework of the ESSE-RF study). Sistemnye Gipertenzii = Systemic Hypertension. 2015;12(3):9–24. In Russian
4. Lisowska-Myjak B. Serum and urinary biomarkers of acute kidney injury. Blood Purification. 2010;29(4):357–365. doi:10.1159/000309421
5. Abassi Z, Sagi O, Armaly Z, Bishara B. Neutrophil gelatinase-associated lipocalin (NGAL): a novel biomarker for acute kidney injury. Harefuah. 2011;150(2):111–116.
6. Mårtensson J, Martling CR, Bell M. Novel biomarkers of acute kidney injury and failure: clinical applicability. Br J Anaesth. 2012;109(6):843–850. doi:10.1093/bja/aes357
7. Kamijo-Ikemori A, Sugaya T, Kimura K. Urinary fatty acid binding protein in renal disease. Clinica Chimica Acta; International Journal of Clinical Chemistry. 2006;374(1–2):1–7.
8. Bolignano D, Lacquaniti A, Coppolino G, Donato V, Campo S, Fazio MR et al. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(2):337–344. doi:10.2215/CJN.03530708
9. Devarajan P. The use of targeted biomarkers for chronic kidney disease. Adv Chronic Kidney Dis. 2010;17(6):469–479. doi:10.1053/j.ackd.2010.09.002
10. Satoh-Asahara N, Suganami T, Majima T, Kotani K, Kato Y, Araki R et al. Urinary cystatin C as a potential risk marker for cardiovascular disease and chronic kidney disease in patients with obesity and metabolic syndrome. Clin J Am Soc Nephrol. 2011;6 (2):265–273. doi:10.2215/CJN.04830610
11. Bolignano D, Lacquaniti A, Coppolino G, Campo S, Arena A, Buemi M. Neutrophil gelatinase-associated lipocalin reflects the severity of renal impairment in subjects affected by chronic kidney disease. Kidney Blood Press Res. 2008;31(4):255–258. doi:10.1159/000143726
12. Ko GJ, Grigoryev DN, Linfert D, Jang HR, Watkins T, Cheadle C et al. Transcriptional analysis of kidneys during repair from AKI reveals possible roles for NGAL and KIM-1 as biomarkers of AKI-to-CKD transition. Am J Physiol Renal Physiol. 2010;298(6): F1472–F1483. doi:10.1152/ajprenal.00619.2009
13. Shankar A, Teppala S. Relationship between serum cystatin C and hypertension among US adults without clinically recognized chronic kidney disease. J Am Soc Hypertens. 2011;5 (5):378–384. doi:10.1016/j.jash.2011.03.003
14. Moura Rdo S, Vasconcelos DF, Freitas E, de Moura FJ, Rosa TT, Veiga JP. Cystatin C, CRP, log TG/HDLc and metabolic syndrome are associated with microalbuminuria in hypertension. Arq Bras Cardiol. 2014;102(1):54–59. doi:10.5935/abc.20130210
15. Padhy M, Kaushik S, Girish MP, Mohapatra S, Shah S, Koner BC. Serum neutrophil gelatinase associated lipocalin (NGAL) and cystatin C as early predictors of contrast-induced acute kidney injury in patients undergoing percutaneous coronary intervention. Clin Chim Acta. 2014;435:48–52. doi:10.1016/j. cca.2014.04.016
16. Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, Malyszko JS, Dobrzycki S. Neutrophil-gelatinase-associated lipocalin and renal function after percutaneous coronary interventions. Am J Nephrol. 2006;26(3):287–292.
17. Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, Malyszko JS, Pawlak K, Mysliwiec M et al. Could neutrophilgelatinase-associated lipocalin and cystatin C predict the development of contrast-induced nephropathy after percutaneous coronary interventions in patients with stable angina and normal serum creatinine values? Kidney Blood Press Res. 2007;30 (6):408–415.
18. Ghonemy TA, Amro GM. Plasma neutrophil gelatinase-associated lipocalin (NGAL) and plasma cystatin C (CysC) as biomarker of acute kidney injury after cardiac surgery. Saudi J Kidney Dis Transpl. 2014;25(3):582–588.
19. Kidher E, Harling L, Ashrafian H, Naase H, Chukwueme- ka A, Anderson J et al. Pulse wave velocity and neutrophil gelatinase-associated lipocalin as predictors of acute kidney injury following aortic valve replacement. J Cardiothorac Surg. 2014;9:89. doi:10. 1186/1749–8090–9.
20. Proletov IaIu, Saganova ES, Smirnov AV. Biomarkers in the diagnosis of acute kidney injury. Nephrology. 2014;18(4):25–35. In Russian
21. Makris K, Markou N, Evodia E, Dimopoulou E, Drakopoulos I, Ntetsika K et al. Urinary neutrophil gelatinase-associated lipocalin (NGAL) as an early marker of acute kidney injury in critically ill multiple trauma patients. Clin Chem Lab Med. 2009;47(1):79–82. doi:10.1515/CCLM.2009.004
22. Chaudhary K, Phadke G, Nistala R, Weidmeyer CE, McFar-lane SI, Whaley-Connell A. The emerging role of biomarkers in diabetic and hypertensive chronic kidney disease. Curr Diab Rep. 2010;10(1):37–42. doi:10.1007/s11892–009–0080-z
23. Blumczynski A, Sołtysiak J, Lipkowska K, Silska M, Poprawska A, Musielak A et al. Hypertensive nephropathy in children — do we diagnose early enough? Blood Press. 2012;21 (4):233–9. doi:10.3109/08037051.2012.666393
24. Aksan G, İnci S, Nar G, Siğirci S, Gedikli Ö, Soylu K et al. Serum neutrophıl gelatınase-assocıated lıpocalın levels in patients with non-dipper hypertension. Clin Invest Med. 2015;38 (2):E53–E62.
25. Peralta CA, Katz R, Bonventre JV, Sabbisetti V, Siscovick D, Sarnak M et al. Associations of urinary levels of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) with kidney function decline in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Kidney Dis. 2012;60(6):904–11. doi:10.1053/j.ajkd.2012.05.014
26. Leoncini G, Mussap M, Viazzi F, Fravega M, Degrandi R, Bezante GP et al. Combined use of urinary neutrophil gelatinase-associated lipocalin (uNGAL) and albumin as markers of early cardiac damage in primary hypertension. Clin Chim Acta. 2011;412 (21–22):1951–1956. doi:10.1016/j.cca.2011.06.043
27. Parikh CR, Thiessen-Philbrook H, Garg AX, Kadiyala D, Shlipak MG, Koyner JL et al. Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery. Clin J Am Soc Nephrol. 2013;8(7):1079–88. doi:10.2215/CJN.10971012
28. Szeto CC, Kwan BC, Lai KB, Lai FM, Chow KM, Wang G et al. Urinary expression of kidney injury markers in renal transplant recipients. Clin J Am Soc Nephrol. 2010;5(12):2329–2337. doi:10.2215/CJN.01910310
29. Hawkins R. New biomarkers of acute kidney injury and the cardio-renal syndrome. Korean J Lab Med. 2011;31(2):72–80. doi:10.3343/kjlm.2011.31.2.72
30. Hisamichi M, Kamijo-Ikemori A, Sugaya T, Ichikawa D, Hoshino S, Hirata K et al. Increase in urinary markers during the acute phase reflects the degree of chronic tubulointerstitial injury after ischemia-reperfusion renal injury. Biomarkers. 2017;22(1):5–13. doi:10.3109/1354750X.2016.1153723
31. Waanders F, Vaidya VS, van Goor H, Leuvenink H, Damman K, Hamming I et al. Effect of renin-angiotensinaldosterone system inhibition, dietary sodium restriction, and/or diuretics on urinary kidney injury molecule 1 excretion in nondiabetic proteinuric kidney disease: a post hoc analysis of a randomized controlled trial. Am J Kidney Dis. 2009;53(1):16–25. doi:10.1053/j.ajkd.2008.07.021
32. Heijnen BF, Van Essen H, Schalkwijk CG, Janssen BJ, Struijker-Boudier HA. Renal inflammatory markers during the onset of hypertension in spontaneously hypertensive rats. Hypertens Res. 2014;37(2):100–109. doi:10.1038/hr.2013.99
33. Hosohata K, Yoshioka D, Tanaka A, Ando H, Fujimura A. Early urinary biomarkers for renal tubular damage in spontaneously hypertensive rats on a high salt intake. Hypertens Res. 2016;39(1):19–26. doi:10.1038/hr.2015.103
34. Kadioglu T, Uzunlulu M, Yigit Kaya S, Oguz A, Ggonenli G, Isbilen B et al. Urinary kidney injury molecule-1 levels as a marker of early kidney injury in hypertensive patients. Minerva Urol Nefrol. 2016;68(5):456–461.
35. Doi K, Noiri E, Sugaya T. Urinary L-type fatty acid-binding protein as a new renal biomarker in critical care. Curr Opin Crit Care. 2010;16(6):545–9. doi:10.1097/MCC.0b013e32833e2fa4
36. McMahon BA, Murray PT. Urinary liver fatty acid-binding protein: another novel biomarker of acute kidney injury. Kidney Int. 2010;77(8):657–9. doi:10.1038/ki.2010.5
37. Mori K, Mukoyama M, Kasahara M, Yokoi H, Nakao K. Disease biomarkers for CKD. Nihon Rinsho. 2012;70 (5):864–868.
38. Xu Y, Xie Y, Shao X, Ni Z, Mou S. L-FABP: A novel biomarker of kidney disease. Clin Chim Acta. 2015;445:85–90. doi:10.1016/j.cca.2015.03.017
39. Matsui K, Kamijo-Ikemori A, Imai N, Sugaya T, Yasuda T, Tatsunami S et al. Clinical significance of urinary liver-type fatty acid-binding protein as a predictor of ESRD and CVD in patients with CKD. Clin Exp Nephrol. 2016;20(2):195–203. doi:10.1007/s10157–015–1144–9
40. Yokoyama T, Kamijo-Ikemori A, Sugaya T, Hoshino S, Yasuda T, Kimura K. Urinary excretion of liver type fatty acid binding protein accurately reflects the degree of tubulointerstitial damage. Am J Pathol. 2009;174(6):2096–2106. doi:10.2353/ajpath.2009.080780
41. Sasaki H, Kamijo-Ikemori A, Sugaya T, Yamashita K, Yokoyama T, Koike J et al. Urinary fatty acids and liver-type fatty acid binding protein in diabetic nephropathy. Nephron Clin Pract. 2009;112(3):148–156. doi:10.1159/000214210
42. Kamijo-Ikemori A, Sugaya T, Yasuda T, Kawata T, Ota A, Tatsunami S et al. Clinical significance of urinary liver-type fatty acid-binding protein in diabetic nephropathy of type 2 diabetic patients. Diabetes Care. 2011;34(3):691–696. doi:10.2337/dc10–1392.
43. Ishimitsu T, Ohta S, Saito M, Teranishi M, Inada H, Yoshii M et al. Urinary excretion of liver fatty acid-binding protein in health-check participants. Clin Exp Nephrol. 2005;9(1):34–9.
44. Malyszko J, Bachorzewska-Gajewska H, Sitniewska E, Malyszko JS, Poniatowski B, Dobrzycki S. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in non-diabetic patients with stage 2–4 chronic kidney disease. Ren Fail. 2008;30(6):625–628. doi:10.1080/08860220802134607
45. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. Modification of Diet in Renal Disease Study Group. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med. 1999;130 (6):461–470. doi:10.7326/0003-4819-130-6-199903160-00002
46. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12. doi:10.7326/0003-4819-150-9-200905050-00006
47. Stevens LA, Claybon MA, Schmid CH, Chen J, Horio M, Imai E et al. Evaluation of the Chronic Kidney Disease Epidemiology Collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney Int. 2011;79(5):555– 562. doi:10.1038/ki.2010.462
48. Moiseev VC, Mukhin NA, Kobalava JD, Bobkova IN, Ville- valde SV, Efremovtseva MA et al. Cardiovascular risk and chronic kidney disease: cardio-nephroprotection strategies. Russian Journal of Cardiology. 2014;8 (112):7–37. doi:10.15829/1560-4071-2014-8-7-37. In Russian
49. Verbeke F, Lindley E, Van Bortel L, Vanholder R, London G, Cochat P et al. A European Renal Best Practice (ERBP) position statement on the kidney disease: Improving Global Outcomes (KDIGO) clinical practice guideline for the management of blood pressure in nondialysis-dependent chronic kidney disease: an endorsement with caveats for real-life application. Nephrol Dial Transplant. 2014;29(3):490–96. doi:10.1093/ndt/gft321
50. Velkov VV. Cystatin C: new opportunities and new tasks in laboratory diagnostics (part 1). Kliniko-laboratorniy Konsilium = Clinical and Laboratory Consilium. 2010;5(1):25–31. In Russian
51. KGIGO 2012. Clinical practice guideline for the evaluation and management of Chronic Kidney Disease. Kidney International Supplements. 2013;3(1):1–150. doi:10.1038
52. Watanabe S, Okura T, Liu J, Miyoshi K, Fukuoka T, Hiwada K et al. Serum cystatin C level is marker of end-organ damage in patients with essential hypertension. Hypertens Res. 2003;26(11):895–899.
53. Peralta CA, Whooley MA, Ix JH, Shlipak MG. Kidney function and systolic blood pressure new insights from cystatin C: data from the Heart and Soul Study. Am J Hypertens. 2006;19 (9):939–946.
54. Mena C, Robles NR, de Prado JM, Gallego FG, Cidoncha A. Cystatin C and blood pressure: results of 24 h ambulatory blood pressure monitoring. Eur J Intern Med. 2010;21 (3):185–90. doi:10.1016/j.ejim.2010.01.016
55. Rogacev KS, Pickering JW, Seiler S, Zawada AM, Emrich I, Fliser D et al. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation incorporating both cystatin C and creatinine best predicts individual risk: a cohort study in 444 patients with chronic kidney disease. Nephrol Dial Transplant. 2014;29(2):348–55. doi:10.1093/ndt/gft422
56. Wasung ME, Chawla LS, Madero M. Biomarkers of renal function, which and when? Clin Chim Acta. 2015;438:350–357. doi:10.1016/j.cca.2014.08.039
57. Teo BW, Sabanayagam C, Liao J, Toh QC, Saw S, Wong TY et al. Comparison of CKD-EPI cystatin C and creatinine glomerular filtration rate estimation equations in Asian Indians. Int J Nephrol. 2014;2014:746497. doi:10.1155/2014/746497
58. Ozer BA, Dursun B, Baykal A, Gultekin M, Suleymanlar G. Can cystatin C be a better marker for the early detection of renal damage in primary hypertensive patients? Ren Fail. 2005;27(3):247–53.
59. Palatini P, Benetti E, Zanier A, Santonastaso M, Mazzer A, Cozzio S et al. Cystatin C as predictor of microalbuminuria in the early stage of hypertension. Nephron Clin Pract. 2009;113(4):309– 314. doi:10.1159/000235949
60. Ezenwaka CE, Idris S, Davis G, Roberts L. Measurement of neutrophil gelatinase-associated lipocalin (NGAL) in patients with non-communicable diseases: any additional benefit? Arch Physiol Biochem. 2016;122(2):70–74. doi: 10.3109/13813455. 2016.1140212
61. Kuzmin OB, Zhezha VV, Belaynin VV, Buchneva NV, Landar LN, Serdyuk SV. Diagnostic and prognostic value of renal tubular injury biomarkers NGAL, KIM-1, L-FABP IN chronic kidney disease patients. Nefrologiya = Nephrology. 2017;21(2):24–32. In Russian
62. Prkacin I, Ozvald I, Cavrić G, Balenović D, Bulum T, Flegar-Mestrić Z. Importance of urinary NGAL, serum creatinine standardization and estimated glomerular filtration rate inresistant hypertension. Coll Antropol. 2013;37(3):821–825.
63. Blázquez-Medela AM, García-Sánchez O, Blanco-Gozalo V, Quiros Y, Montero MJ, Martínez-Salgado C et al. Hypertension and hyperglycemia synergize to cause incipient renal tubular alterations resulting in increased NGAL urinary excretion in rats. PLoS One. 2014;9(8): e105988. doi:10.1371/journal. pone.0105988. eCollection 2014
64. Blázquez-Medela AM, García-Sánchez O, Blanco-Gozalo V, Quiros Y, Montero MJ, Martínez-Salgado et al. Hypertension and hyperglycemia synergize to cause incipient renal tubular alterations resulting in increased NGAL urinary excretion in rats. PLoS One. 2014;9(8): e105988. doi:10.1371/journal.pone. 0105988.
65. Przybylowski P, Malyszko J, Kozlowska S, Malyszko JS. Kidney injury molecule-1 correlates with kidney function in heart allograft recipients. Transplant Proc. 2011;43(8):3061–3. doi:10.1016/j.transproceed.2011.08.049
66. Ichikawa D, Kamijo-Ikemori A, Sugaya T, Yasuda T, Hoshi- no S, Igarashi-Migitaka J et al. Renal liver-type fatty acid binding protein attenuates angiotensin II-induced renal injury. Hypertension. 2012;60(4):973–80. doi:10.1161/HYPERTENSIONAHA. 112.199828
67. Ichikawa D, Kamijo-Ikemori A, Sugaya T, Shibagaki Y, Yasuda T, Katayama K et al. Renoprotective effect of renal liver-type fatty acid binding protein and angiotensin II type 1a receptor loss in renal injury caused by RAS activation. Am J Physiol Renal Physiol. 2014;306(6): F655–F663. doi:10.1152/ajprenal.00460.2013
68. Ichikawa D, Kamijo-Ikemori A, Sugaya T, Shibagaki Y, Yasuda T, Hoshino S et al. Human liver-type fatty acid-binding protein protects against tubulointerstitial injury in aldosterone-induced renal injury. Am J Physiol Renal Physiol. 2015;308(2): F114–F121. doi:10.1152/ajprenal.00469.2014
69. Nakamura T, Inoue T, Sugaya T, Kawagoe Y, Suzuki T, Ueda Y et al. Renoprotective effect of telmisartan in patients with chronic kidney disease. Clin Exp Hypertens. 2008;30(7):662–672. doi:10.1080/10641960802443373
70. Nakamura T, Fujiwara N, Kawagoe Y, Sugaya T, Ueda Y, Koide H. Effects of telmisartan and enalapril on renoprotection in patients with mild to moderate chronic kidney disease. Eur J Clin Invest. 2010;40(9):790–796. doi:10.1111/j.1365–2362.2010. 02319.x
71. Yokoyama T, Kamijo-Ikemori A, Sugaya T, Hoshino S, Yasuda T, Kimura K. Urinary excretion of liver type fatty acid binding protein accurately reflects the degree of tubulointerstitial damage. Am J Pathol. 2009;174(6):2096–2106. doi:10.2353/ajpath. 2009.080780
72. Tanaka T, Doi K, Maeda-Mamiya R, Negishi K, Portilla D, Sugaya T et al. Urinary L-type fatty acid-binding protein can reflect renal tubulointerstitial injury. Am J Pathol. 2009;174(4):1203–1211. doi:10.2353/ajpath.2009.080511
Review
For citations:
Mironova S.A., Yudina Yu.S., Ionov M.V., Avdonina N.G., Emelyanov I.V., Vasil’eva E.Yu., Zvartau N.E., Konradi A.O. Biomarkers of kidney injury in hypertension: conventional versus novel. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2018;24(2):223-236. (In Russ.) https://doi.org/10.18705/1607-419X-2018-24-2-223-236