Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

Coronary hemodynamics in left ventricular hypertrophy, as evidenced by13N-ammonium positron emission tomography

https://doi.org/10.18705/1607-419X-2005-11-3-185-187

Abstract

In patients with left ventricular hypertrophv (LVH), coronary hemodynamics was studied by13N-ammonium positron emission tomography (PET). We examined 38 patients aged 53,22±9,57 years, who had LVH in the presence of hypertensive disease. A control group comprised 15 individuals without a history of cardiovascular diseases The structural and functional parameters on the left ventricle were determined by echocadiography. Myocardial blood flow (МBР) was evaluated at rest and during a dipyridamole test, by using PET. The coronагу reserve (CR) and resistanсe were calculated. In the patients with LVH and in the controls, the mean resting values of MBF did not differ significantly (73,3±12,8 versus 73,4±16,6 ml/min per 100 g of tissue, the differences wen insignificant). During the dipyridamole test, the values of MBF and CR were significantly lower in the patients with LVH (140,4±35,1 versus 219,86±69,2 ml/min per 100 g of tissue (p<0,5) and (1,94±0,62 versus 2,95±0,41 (p<0,05), respectively). In the presence of vasodilatation, coronary resistance was substantially less in the control group (0,54±0,16 versus 0,89±0,24; p<0,05). There was no correlation between the coronary hemodynamic parameters and the left ventricular myocardial mass index. CR was substantially less in the concentric type of LVH than that in the eccentric type (1,77±0,44 versus 2,11±0,51; p<0,05). All patients with concentric LVH showed impaired left ventricular diastolic function (LVDF) whereas the latter was observed only in case in the eccentric type. In LVH, resting МBF did not virtually differ from the normal values; however, the coronary bed responded to dipyridamole-induced vasodilatation to a substantially lesser degree. The decrease in CR was largely marked in concentric hypertrophy and associated with LVDF.

About the Authors

D. V. Ryzhkova
ЦНИРРИ МЗ и СР РФ
Russian Federation


L. A. Krasilnikova
ЦНИРРИ МЗ и СР РФ
Russian Federation


Ye. M. Nifontov
ЦНИРРИ МЗ и СР РФ
Russian Federation


L. A. Tyutin
ПСПбГМУ им. акад. И.П. Павлова
Russian Federation


E. A. Demchenko
ЦНИРРИ МЗ и СР РФ
Russian Federation


References

1. Koren M.J., Devereux R.B., Casale P.N. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intent Med 1991; 114: 345-52.

2. Levy D., Garrison R.J., Savage D.D. et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl Med 1990: 322: 1561-6.

3. Kannel W.B. Left ventricular hypertrophy as a risk factor. J Hypertension 1991; 9 (Suppl. 2): S3-S9.

4. Strauer B.E. Ventricular function and coronary hemodynamics in hypertensive heart disease. Am J Cardiol 1979; 44: 999-1006.

5. Vogt M., Motz W., Strauer B.E. Coronary hemodynamics in hypertensive heart disease. Eur Heart J 1992; 13 (Suppl. D): 44-9.

6. Laine H., Hatoh C., Luotolahti M. et al. Myocardial oxygen consumption is unchanged but efficient is reduced in patients with essential hypertension and left ventricular hypertrophy. Circulation 1999; 100: 2425-30.

7. Opherk D., Mall G., Zebe H. et al. Reduction of coronary reserve: a mechanism for angina pectoris inpatients with angina and normal coronary arteries. Circulation 1984; 69: 1-7.

8. Marcus M.L., Doty D.B., Hiratzka L.F. et al. Decreased coronary reserve: a mechanism for angina pectoris in patients with aortic stenosis and normal coronary arteries. N Engl J Med 1982; 307: 1362-7.

9. Pichard A.D., Gorlin R., Smith H. et al. Coronary flow studies in patients with left ventricular hypertrophy of the hypertensive type. Am J Cardiol 1981; 47: 547-54.

10. Schwartzkopff B., Motz W., Frenzel H. et al. Structural and functional alterations of the intramyocardial coronary arterioles in patients with arterial hypertension. Circulation 1993; 88: 993-1003.

11. Kozakova M., Palombo C., Pratali L. et al. Mechanisms of coronary flow reserve impairment in human hypertension. J Hypertension 1997; 29: 551-9.

12. Шляхто Е.В., Конради А.О., Моисеева О.М. Молекулярно-генетические и клеточные аспекты ремоделирования сердца и сосудов при гипертонической болезни. Тер. арх. 2004; 6: 51-7.

13. Шляхто Е.В., Конради А.О., Захаров Д.В., Рудоманов О.Г. Структурно-функциональное изменение миокарда у больных гипертонической болезнью. Кардиология. 1999; 2: 49-55.

14. Bellina C.R., Parodi O., Camici P. et al. Simultaneous in vivo and in vitro validation of 13N-ammonia for the assessment of regional myocardial blood flow. J Nucl Med 1990; 31: 1335-43.

15. Berry J.J., Baker J.A., Pieper K.S. et al. The effect of metabolic milieu on cardiac PET imaging using fluorine-18-deoxyglucose and nitrogen-13N-ammonia in normal volunteers. J Nucl Med 1991; 32: 1518-25.

16. Devereux R.B., Alonso D.R., Lutas E.M. et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986; 57: 450-8.

17. Savage D.D., Garrison R.J., Konnel W.B. The spectrum of left ventricular hypertrophy in a general population sample: the Framingham study. Circulation 1987; 75 (Suppl. 1): 26-33.

18. Ganau A., Devereux R.B., Roman M.J. et al. Patterns of left ventricular hypertrophy and geometric remodelling in essential hypertension. J Am Coll Cardiol 1992; 19: 1550-8.

19. Yashida K., Mullani N., Gould K.L. Coronary flow and flow reserve by positron emission tomography simplified for clinical Unreal application using Rb-82 or 13N-ammonia. J Nuc Med 1996; 37: 1701-12.

20. Weinberg I.N., Huang S.C., Hoffman E.J. et al. Validation of PET-acquired functions for cardiac studies. J Nuc Med 1988; 29: 241-7.

21. Laine H., Raitakari O.T., Niinikoski H. Early impairment of the impairment reserve in young men with borderline hypertension. J Am Coll Cardiol 1998; 32: 147-53.

22. Schoder H., Silverman D.H., Campisi R. Effect of mental stress on myocardial blood flow and vasomotion in patients with coronary artery disease. J Nucl Med 2000; 41: 11-6.

23. Rossi M.A. Patologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J Hypertension 1998; 16 (7): 1031-41.

24. Akinboboye O.O., Chou R.L., Bergmann S.R. Myocardial blood flow and efficiency in concentric left ventricular hypertrophy. Am J Нуpertension 2004; 17: 433-8.

25. Gimelly A., Schneider-Eicke J., Neglia D. et al. Homogeneously reduced versus regionally myocardial blood flaw in hypertensive patterns of myocardial perfusion associated with degree of hypertrophy. Am Coll Cardiol 1998; 31: 366-73.

26. Ghaki J.K., Liao Y., Cooper R.S. Influence of left ventricular geometric patterns on prognosis in patients with or without coronary artery disease. J Am Coll Cardiol 1998; 31: 1635-40.


Review

For citations:


Ryzhkova D.V., Krasilnikova L.A., Nifontov Ye.M., Tyutin L.A., Demchenko E.A. Coronary hemodynamics in left ventricular hypertrophy, as evidenced by13N-ammonium positron emission tomography. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2005;11(3):185-187. (In Russ.) https://doi.org/10.18705/1607-419X-2005-11-3-185-187

Views: 1087


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)