Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

Рositron emission tomography in assessment of heart sympathetic nervous system

https://doi.org/10.18705/1607-419X-2008-14-4-347-355

Abstract

This article summarizes data of the studies with the use of positron emission tomography (PET) and devotes technical aspects and clinical application of PET for assessment of the autonomic nervous system of the heart in patients with cardiac diseases. According to the results of experimental and clinical studies PET with radiolabeled сatecholamines and adrenoreceptor ligands provides us with information about alteration of cardiac sympathetic innervation at different steps of neurotransmission. It plays a key role in the progression of various heart diseases such as ischemia, diabetes mellitus, heart failure and noncoronary arrhythmia. Cardiac sympathetic neuronal PET imaging seems to be a good tool for the stratification of the risk of the severe cardiovascular complications.

About the Authors

D. Ryzhkova
Federal Almazov Heart, Blood and Endocrinology Center, Russian Scientific Center of Radiology and Surgical Technology
Russian Federation


E. M. Zykov
Federal Almazov Heart, Blood and Endocrinology Center, Russian Scientific Center of Radiology and Surgical Technology
Russian Federation


E. V. Shlyakhto
Federal Almazov Heart, Blood and Endocrinology Center, Russian Scientific Center of Radiology and Surgical Technology
Russian Federation


References

1. Барабанов С.В., Евлахов В.И., Пуговкин А.П. и соавт. Физиология сердца. Учебное пособие. СПб: «СпецЛит» 2001:144 С.

2.

3. Швалев В.Н., Сосунов А.А., Гуски Г. Морфологические основы иннервации сердца. М: Наука. 1992.

4.

5. Port J.D., Bristow M.R. Altered beta-adrenergic receptor gene regulation and signaling in chronic heart failure. J Moll Cell Cardiol 2001;33(5):887−905.

6.

7. Elsinga P.H., van Waarde A., Vaalburg W. Receptor imaging in the thorax with PET. Eur J Pharmacol 2004;499(1-2):1−13.

8.

9. Nguyen N.T., De Grado T.R., Chakraborty P., et al. Myocardial kinetics of carbon-11-epinephrine in the isolated working rat heart. J Nucl Med 1997;38(5):780−5.

10.

11. Munch G., Nguyen N.T., Nekolla S. et al. Evaluation of sympathetic nerve terminals with [11C] epinephrine and [11C] hydroxyephedrine and positron emission tomography. Circulation 2000;101(5):516−23.

12.

13. Goldstein D.S., Chang P.C., Eisenhofer G., et al. Positron emission tomographic imaging of cardiac sympathetic innervation and function. Circulation 1990;81(5):1606−21.

14.

15. Goldstein D.S., Eisenhofer G., Dunn B.B., et al. Positron emission tomographic imaging of cardiac sympathetic innervation using 6-[18F]-fluorodopamine: initial findings in humans. J Am Coll Cardiol 1993;22(7):1961−71.

16.

17. Luxen A., Perlmutter M., Bida G.T., et al. Remote, semiautomated production of 18-[ F]-fluoro-L-dopa for human studies with PET. Int J Rad Appl Instrum 1990;41:275-281.

18.

19. Schwaiger M., Kalff V., Rosenspire K., et al. Noninvasive evaluation of symphatetic nervous system in human heart by positron emission tomography. Circulation 1990;82(2):457−64.

20.

21. De Grado T.R., Hutchins G.D., Toorongian S.A., et al. Myocardial kinetics of carbon-11-meta-hydroxyephedrine: retention mechanisms and effects of norepinephrine. J Nucl Med 1993;34(8):1287−93.

22.

23. van Waarde A., Elsinga P.H., Doze P., et al. A novel beta-adrenoreceptor ligand for positron emission tomography: evaluation in experimental animals. Eur J Pharmacol 1998;343(2-3):289−96.

24.

25. Elsinga P.H., van Waarde A., Jaeggi K.A., et al. Synthesis and evaluation of (S)-4-(3-(2'-[11C]-isopropylamino)-2-hydroxypropoxy)-2H-benzimidazol-2-one ((S- [11C]-CGP 12388) and (S)-4-(3-((1'-[18F]-fluoroisopropyl)amino)-2-hydroxypropoxy)-2H-benzimidazol-2-one((S)-[18F]-fluoro-CGP 12388) for visualization of beta-adrenoreceptors with positron emission tomography. J Med Chem 1997;(23):3829−35.

26.

27. Momose M., Reder S., Raffel D.M., et al. Evaluation of cardiac beta-adrenoreceptors in the isolated perfused rat heart using (S)-11C-CGP12388. J Nucl Med 2004;45(3):471−7.

28.

29. Berridge M.S., Nelson A.D., Zheng L., et al. Specific beta-adrenergic receptor binding of carazolol measured with PET. J Nucl Med 1994;35:1665-1676.

30.

31. Law M.P., Osman S., Pike V.W., et al. Evaluation of [11C]-GB67, a novel radioligand for imaging myocardial alpha 1-adrenoreceptors with positron emission tomography. Eur J Nucl Med 2000;27(1):7−17.

32.

33. Spyrou N., Rosen S.D., Fath-Ordoubadi F., et al. Myocardial beta-adrenoreceptor density one month after acute myocardial infarction predicts left ventricular volumes at six months. J Am Coll Cardiol 2002;40(7):1216−24.

34.

35. Fricke E., Fricke H., Eckert S., et al. Myocardial sympathetic innervation in patients with chronic coronary artery disease: is reduction in coronary flow reserve correlated with sympathetic denervation? Eur J Nucl Med Mol Imaging 2007;34(2):206−11.

36.

37. Bullow H.P., Stahl F., Lauer B., et al. Alterations of myocardial presynaptic sympathetic innervation in patients with multi-vessel coronary disease but without history of myocardial infarction. Nucl Med Commun 2003;24(3):233−9.

38.

39. Luisi A.J., Suzuki G., De Kemp R., et al. Regional 11C-hydroxyephedrine retention in hibernating myocardium: chronic inhomogeneity of sympathetic innervation in the absence of infarction. J Nucl Med 2005;46(8):1368−74.

40.

41. Hartikainen J., Mantysaari M., Kuikka J., et al. Extent of cardiac autonomic denervation in relation to angina on exercise test in patients with recent acute myocardial infarction. Am J Cardiol 1994;74:760-763.

42.

43. Allman K.C., Wieland D.M., Muzik O., et al. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol 1993;22(2):368−75.

44.

45. Fallen E.L., Coates G., Nahmias C., et al. Recovery rates of regional sympathetic reinnervation and myocardial blood flow after acute myocardial infarction. Am Heart J 1999;137(5):863−9.

46.

47. Школьникова М.А. Жизнеугрожающие аритмии у детей. М: Нефтяник. 1999:230 С.

48.

49. Keefe D.L., Schwarts J., Somberg J.C. The substrate and trigger: the role of myocardial vulnerability in sudden cardiac death. Amer Heart J 1987;113(1):218−225.

50.

51. Myerlurg R.J., Kessler M., Castellanos A. Pathophysiology of sudden cardiac death. PACE 1991;14:935−943.

52.

53. Inoue H., Zipes D.P. Results of sympathetic denervation in the canine heart: supersensitivity that may be arrhythmogenic. Circulation 1987;75:877−811.

54.

55. Wang D. W., Makita N., Kitabatake A. et al. Enhanced Na+ Channel Intermediate Inactivation in Brugada Syndrome. Circ Res 2000;87:37.

56.

57. Kasanuki H., Ohnishi S., Matuda N., Nirei T. Idiopathic ventricular fibrillation induced with vagal activity in patients without obvious heart disease. Circulation 1997;95:2277−2285.

58.

59. Shimizu W., Aiba Т., Kurita Т., Kamakura S. Paradoxic abbreviation of repolarization in epicardium of the right ventricular outflow tract during augmentation of Brugada-type ST segment elevation. J Cardiovasc Electrophysiol 2001;12:1418-1421.

60.

61. Kies P., Wichter T., Schafers M., et al. Abnormal myocardial presynaptic norepinephrine recycling in patients with Brugada syndrome. Circulation 2004;110(19):3017−22.

62.

63. Wichter T., Schafers M., Rhodes C.G., et al. Abnormalities of cardiac sympathetic innervation in arrhythmogenic right ventricular cardiomyopathy: quantitative assessment of presynaptic norepinephrine reuptake and postsynaptic beta-adren-ergic receptor density with PET. Circulation 2000;13:1552-1558.

64.

65. Schäfers M. A. Wichter T., Schäfers K. P., et al. Pulmonary β adrenoceptor density in arrhythmogenic right ventricular cardiomyopathy and idiopathic tachycardia. Basic Res Cardiol 96:91−97.

66.

67. Calkins H., Lehmann M.H., Allman K., et al. Scintigraphic pattern of regional cardiac sympathetic innervation in patients with familial long QT syndrome using positron emission tomography. Circulation 1993;87(5):1616−21.

68.

69. Mazzadi AN, Andre-Fouet X, Duisit J, et al. Cardiac retention of [11C]HED in genotyped long QT patients: a potential amplifier role for severity of the disease. Am J Physiol Heart Circ Physiol 2003;285(3):H1286−93.

70.

71. Merlet P., Delforge J., Syrota A., et al. Positron emission tomography with 11C CGP-12177 to assess beta-adrenergic receptor concentration in idiopathic dilated cardiomyopathy. Circulation 1993;87(4):1169−78.

72.

73. de Jong R.M., Willemsen A.T., Slart R.H., et al. Myocardial beta-adrenoreceptor downregulation in idiopathic dilated cardiomyopathy measured in vivo with PET using the new radioligand (S)-[11C] CGP12388. Eur J Nucl Med Mol Imaging 2005;32(4):443−7.

74.

75. Hartmann F., Ziegler S., Nekolla S., et al. Regional patterns of myocardial sympathetic denervation in dilated cardiomyopathy: an analysis using carbon-11 hydroxyephedrine and positron emission tomography. Heart 1999;81(3):262−70.

76.

77. Ungerer M., Hartmann F., Karoglan M., et al. Regional in vivo and in vitro characterization of autonomic innervation in cardiomyopathic human heart. Circulation 1998;97(2):174−80.

78.

79. Pietila M., Malminiemi K., Ukkonen H., et al. Reduced myocardial carbon-11 hydroxyephedrine retention is associated with poor prognosis in chronic heart failure. Eur J Nucl Med 2001;28(3):373−6.

80.

81. Pietila M., Malminiemi K., Vesalainen R., et al. Exercise training in chronic heart failure: beneficial effects on cardiac 11C-hydroxyephedrine PET, autonomic nervous control, and ventricular repolarization. J Nucl Med 2002;43(6):773−9.

82.

83. Bengel F.M., Permanetter B., Ungerer M., et al. Relationship between altered sympathetic innervation, oxidative metabolism and contractile function in the cardiomyopathic human heart; a non-invasive study using positron emission tomography. Eur Heart J 2001;22(17):1594−600.

84.

85. Vinik I.A., Maser R. E., Mitchell B.D., et al. Diabetic Autonomic Neuropathy. Diabetes Care 2003;26:1553-1579.

86.

87. Allman K.C., Steves M.J., Wieland D.M., et al. Noninvasive assessment of cardiac diabetic neuropathy by carbon-11 hydroxy-ephedrine and positron emission tomography. J Am Coll Cardiol 1993;22(5):1425−32.

88.

89. Stevens M.J., Raffel D.M., Allman K.C., et al. Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation 1998;98(10):961−8.

90.

91. Schmid H., Forman L.A., Cao X., et al. Heterogeneous cardiac sympathetic denervation and decreased myocardial nerve growth factor in streptozotocin-induced diabetic rats: implications for cardiac sympathetic dysinnervation complicating diabetes. Diabetes 1999;48(3):603−8.

92.

93. Rimoldi O.E., Drake-Holland A.J., Noble M.I., Camici P.G. Basal and hyperaemic myocardial blood flow in regionally denervated canine hearts: an in vivo study with positron emission tomography. Eur J Nucl Med Mol Inaging 2007;34(2):197−205.

94.

95. Stevens M.J., Dayanikli F., Raffel D.M., et al. Scintigraphic assessment of regionalized defects in myocardial sympathetic innervation and blood flow regulation in diabetic patients with autonomic neuropathy. J Am Coll Cardiol 1998;31(7):1575−84.

96.

97. Di Carli M.F., Bianco-Batlles D., Landa M.E., et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 1999;100(8):813−9.

98.

99. Pop-Busui R., Kirkwood I., Schmid H., et al. Sympathetic dysfunction in type 1 diabetes: association with impaired myocardial blood flow reserve and diastolic dysfunction. J Am Coll Cardiol 2004;44(12):2368−74.


Review

For citations:


Ryzhkova D., Zykov E.M., Shlyakhto E.V. Рositron emission tomography in assessment of heart sympathetic nervous system. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2008;14(4):347-355. (In Russ.) https://doi.org/10.18705/1607-419X-2008-14-4-347-355

Views: 843


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)