Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

TGF-beta-dependent mechanisms of patho genesis of Marfan syndrome and related disorders

https://doi.org/10.18705/1607-419X-2009-15-2-223-226

Abstract

Recent research on the molecular physiology of fibrillin and the pathophysiology of Marfan syndrome and related connective tissue disorders has changed our understanding of this pathology by demonstrating changes in growth factor signalling and in matrix-cell interactions. Marfan syndrome is an autosomal dominant disorder of connective tissue caused by mutations in fibrillin-1. Fibrillin-1 contributes to the regulated activation of the cytokine TGF-ß, and enhanced signaling is a consequence of fibrillin-1 deficiency. Thereby, increased TGF-ß signaling may contribute to the multisystem pathogenesis of Marfan syndrome, including the development of myxomatous changes of the atrioventricular valve, aortic aneurysm and dissection, joint hypermobility syndrome. These data suggest that anti-TGF-β therapeutic strategy for patients with Marfan syndrome can be useful in prevention of the major life-threatening manifestation of this disorder.

About the Author

A. S. Rudoy
Public institution «432 awards of the Red Star the main clinical medical military center of the Armed Forces of the Republic of Belarus»
Russian Federation


References

1. Земцовский Э.В. Диспластические фенотипы и диспластическое сердце. Аналитический обзор. - СПб.: Изд-во «Ольга», 2007. - 80 с.

2.

3. Ades L. CSANZ cardiovascular genetics working group. Guidelines for the diagnosis and management of Marfan syndrome // Heart Lung Circ. - 2007. - Vol. 16. - P. 28-30.

4.

5. Annes J., Munger J., Rifkin D. Making sense of latent TGF-beta activation // J. Cell. Sci. - 2003. - Vol. 116. - P. 217-224.

6.

7. Blobe G., Schiemann W., Lodish H. Role of transforming growth factor beta in human disease // N. Engl. J. Med. - 2000. - Vol. 342. - P. 1350-1358.

8.

9. Byers P. Determination of the molecular basis of Marfan syndrome: a growth industry // J. Clin. Invest. - 2004. - Vol. 114. - P. 161-163.

10.

11. Chung A., Yang H., Radomski M. et al. Long-term doxycycline is more effective than atenolol to prevent thoracic aortic aneurysm in Marfan syndrome through the inhibition of matrix metalloproteinase-2 and -9 // Circ. Res. - 2008. - Vol. 102. - P. e73-85.

12.

13. Collod-Béroud G., Le Bourdelles S., Ades L. et al. Databases. Update of the UMD-FBN1 mutation database and creation of an FBN1 polymorphism database // Human mutation. - 2003. - Vol. 22. - P. 199-208.

14.

15. Corson G., Charbonneau N., Keene D. et al. Differential expression of fibrillin-3 adds to microfibril variety in human and avian, but not rodent, connective tissues // Genomics. - 2004. - Vol. 83. - P. 461-472.

16.

17. Coucke P., Willaert A., Wessels M. et al. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome // Nat. Genet. - 2006. - Vol. 38. - P. 452-457.

18.

19. Cushing M., D. Mariner P., Liao J.-T. et al. Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells // FASEB J. - 2008. - Vol. 22. - P. 1769-1777.

20.

21. De Paepe A., Devereux R., Dietz H. et al. Revised diagnostic criteria for the Marfan syndrome // Am. J. Med. Genet. - 1996. - Vol. 62. - P. 417-426.

22.

23. Faivre L., Collod-Beroud G., Child A. et al. Contribution of molecular analyses in diagnosing Marfan syndrome and type I fibrillinopathies an international study of 1009 probands // J. Med. Genet. - 2008. - Vol. 45. - P. 384-390.

24.

25. Gelb B. Marfan's syndrome and related disorders - more tightly connected than we thought // N. Engl. J. Med. - 2006. - Vol. 355. - P. 841-844.

26.

27. Grainger D., Witchell C., Metcalfe J. Tamoxifen elevates transforming growth factor-ß and suppresses diet-induced formation of lipid lesions in mouse aorta // Nat. Med. - 1995. - Vol. 1. - P. 1067-1073.

28.

29. Habashi J., Judge D., Holm T. et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome // Science. - 2006. - Vol. 312. - P. 117-121.

30.

31. Hollister D., Godfrey M., Sakai L. et al. Immunohistologic abnormalities of the microfibrillar-fiber system in the Marfan syndrome // N. Engl. J. Med. - 1990. - Vol. 323. - P. 152-159.

32.

33. Judge D., Dietz H. Marfan's syndrome // Lancet. - 2005. - Vol. 366. - P. 1965-1976.

34.

35. Lee B., Godfrey M., Vitale E. et al. Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes // Nature. - 1991. - Vol. 352. - P. 330-334.

36.

37. Li B., Khanna A., Sharma V. et al. TGF-ß1 DNA polymorphisms, protein levels, and blood pressure // Hypertension. - 1999. - Vol. 33. - P. 271-275.

38.

39. Loeys B., Chen J., Neptune E. et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2 // Nat. Genet. - 2005. - Vol. 37. - P. 275-281.

40.

41. Mizuguchi T., Collod-Beroud G., Akiyama T. et al. Heterozygous TGFBR2 mutations in Marfan syndrome // Nat. Genet. - 2004. - Vol. 36. - P. 855-860.

42.

43. Neptune E., Frischmeyer P., Arking D. et al. Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome // Nat. Genet. - 2003. - Vol. 33. - P. 407-411.

44.

45. Ng C., Cheng A., Myers L. et al. TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome // J. Clin. Invest. - 2004. - Vol. 114. - P. 1586-1592.

46.

47. Pannu H., Fadulu V., Chang J. et al. Mutations in transforming growth factor-beta receptor type II cause familial thoracic aortic aneurysms and dissections // Circulation. - 2005. - Vol. 112. - P. 513-520.

48.

49. Pearson G., Devereux R., Loeys B. et al. Report of the National Heart, Lung, and Blood Institute and National Marfan Foundation Working Group on Research in Marfan Syndrome and Related Disorders // Circulation. - 2008. - Vol. 118. - P. 785-791.

50.

51. Putnam E., Zhang H., Ramirez F. et al. Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenital contractural arachnodactyly // Nat. Genet. - 1995. - Vol. 11. - P. 456-458.

52.

53. Pyeritz R. Marfan syndrome: 30 years of research equals 30 years of additional life expectancy // Heart. - 2009. - Vol. 95. - P. 173-175.

54.

55. Pyeritz R. Small molecule for a large disease // N. Engl. J. Med. - 2008. - Vol. 358. - P. 2829-2831.

56.

57. Rifkin D. Latent transforming growth factor-β (TGF-β) binding proteins: orchestrators of TGF-β availability // J. Biol. Chem. - 2005. - Vol. 280. - P. 7409-7412.

58.

59. Robinson P., Arteaga-Solis E., Baldock C. et al. The molecular genetics of Marfan syndrome and related disorders // J. Med. Genetics. - 2006. - Vol. 43. - P. 769-787.

60.

61. Robinson P., Booms P., Katzke S. et al. Mutations of FBN1 and genotype-phenotype correlations in Marfan syndrome and related fibrillinopathies // Hum. Mut. - 2002. - Vol. 20. - P. 153-161.

62.

63. Saharinen J., Keski-Oja J. Specific sequence motif of 8-Cys repeats of TGF-beta binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta // Mol. Biol. Cell. - 2000. - Vol. 11. - P. 2691-2704.

64.

65. Yamada Y., Miyauchi A., Goto J. et al. Association of a polymorphism of the transforming growth factor-ß1 gene with genetic susceptibility to osteoporosis in postmenopausal Japanese women // J. Bone Miner. Res. - 1998. - Vol. 13. - P. 1569-1576.

66.


Review

For citations:


Rudoy A.S. TGF-beta-dependent mechanisms of patho genesis of Marfan syndrome and related disorders. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2009;15(2):223-226. (In Russ.) https://doi.org/10.18705/1607-419X-2009-15-2-223-226

Views: 1262


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)