Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

Fibrosis and renin-angiotensin-aldosterone system activity. Reality and future prospects

https://doi.org/10.18705/1607-419X-2012-18-5-449-458

Abstract

Myocardial fibrosis plays a key role in the pathogenesis of cardiovascular diseases. Renin-angiotensin-aldosterone system (RAAS) is the key regulator of vascular tone, potassium and water homeostasis, and response to the tissue damage. The effects of angiotesin II are mediated by 1 type angiotensin II receptors, together with angiotensin-converting enzyme, forming the «classical regulation axis» of RAAS. At chronic high cardiac afterload the genes of procollagen and collagen synthesis are overexpressed leading to the increased production of collagen, fibrosis and myocardial hypertrophy. Both hemodynamic and non-hemodynamic factors affect fibrosis development. RAAS blockers are suggested to have antifibrotic activity. There is a strong evidence of losartan efficiency that can be, at least, partly mediated by antifibrotic activity.

About the Authors

O. M. Drapkina
I.M. Sechenov First Moscow State Medical University
Russian Federation


Yu. S. Drapkina
I.M. Sechenov First Moscow State Medical University
Russian Federation


References

1. Diez J., Gonzalez A., Lopez B., Querejeta R. Mechanisms of disease: pathologic structuralremodeling is more than adaptive hypertrophy in hypertensive heart disease // Nat. Clin. Pract. Cardiovasc. Med. — 2005. — Vol. 2, № 4. — Р. 209-216.

2. Биохимия: Учебник для вузов / Под ред. Северина Е.С. — М. : «ГЭОТАР-Медиа», 2007. — 784 с. / Biochemistry: Textbook / Ed. by Severin E.S. — M. : GEOTAR-Media, 2007. — 784 p. [Russian].

3. Franzke C.W., Bruckner P., Bruckner-Tuderman L. Collagenous transmembrane proteins: recent insights into biology and pathology // J. Biol. Chem. — 2005. — Vol. 280, № 6. — Р. 4005-4008.

4. Hoppe H.J., Reid K.B. Collectins — soluble proteins containing collagenous regions and lectin domains — and their roles in innate immunity // Protein Sci. — 1994. — Vol. 3, № 8. — Р. 1143-1158.

5. Boot-Handford R.P., Tuckwell D.S. Bioessays. Fibrillar collagen: the key to vertebrate evolution? A tale of molecular incest // 2003. — Vol. 25, № 2. — Р. 142-151.

6. Di Lullo G.A., Sweeney S.M., Korkko J., Ala-Kokko L., San Antonio J.D. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen // J. Biol. Chem. — 2002. — Vol. 277, № 6. — Р. 4223-4231.

7. Maron B.J., McKenna W.J., Danielson G.K. et al. American College of Cardiology/European Society of Cardiology Clinical Expert Consensus Document on hypertrophic cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines // Eur. Heart J. - 2003. — Vol. 24, № 21. — P. 1965-1991.

8. Schiavone M.T., Santos R.A., Brosnihan K.B., Khosla M.C., Ferrario C.M.; Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide // Proc. Natl. Acad. Sci. U S A. — 1988. — Vol. 85, № 11. — Р. 4095-4098.

9. Donoghue M., Hsieh F., Baronas E. et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9 // Circ. Res. — 2000. — Vol. 87, № 5. — Р. E1-E9.

10. Ferrario C.M., Jessup J., Chappell M.C. et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2 // Circulation. — 2005. — Vol. 111, № 20. — P. 2605-2610.

11. Iwami K., Ashizawa N., Do Y.S., Graf K., Hsueh W.A. Comparison of ANG II with other growth factors on Egr-1 and matrix gene expression in cardiac fibroblasts // Am. J. Physiol. Heart Circ. Physiol. — 1996. — Vol. 270, № 6, Pt. 2. — P. H2100-H2107.

12. Okada M., Kosaka N., Hoshino Y., Yamawaki H., Hara Y. Effects of captopril and telmisartan on matrix metalloproteinase-2 and -9 expressions and development of left ventricular fibrosis induced by isoprenaline in rats // Biol. Pharm. Bull. — 2010. — Vol. 33, № 9. — Р. 1517-1521.

13. Brilla C.G. Regression ofmyocardial fibrosis in hypertensive heart disease: diverse effects of various antihypertensive drugs // Cardiovasc. Res. — 2000. — Vol. 46, № 2. — Р. 324-331.

14. Ciulla M.M., Paliotti R., Esposito A. et al. Different effects of antihypertensive therapies based on losartan or atenolol on ultrasound and biochemical markers of myocardial fibrosis. Results of a randomized trial // Circulation. — 2004. — Vol. 110, № 5. — P. 552-557.

15. Bataller R., Brenner D.A. Hepatic stellate cells as a target for the treatment of liver fibrosis // Semin. Liver Dis. — 2001. — Vol. 21, № 3. — Р. 437-451.

16. Russo F.P., Alison M.R., Bigger B.W. et al. The bone marrow functionally contributes to liver fibrosis // Gastroenterology. — 2006. — Vol. 130, № 6. — Р. 1807-1821.


Review

For citations:


Drapkina O.M., Drapkina Yu.S. Fibrosis and renin-angiotensin-aldosterone system activity. Reality and future prospects. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2012;18(5):449-458. (In Russ.) https://doi.org/10.18705/1607-419X-2012-18-5-449-458

Views: 1800


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)