Matrix metalloproteinases in patients with resistant hypertension and type 2 diabetes mellitus: relation with renal blood flow and kidney function
https://doi.org/10.18705/1607-419X-2019-25-1-34-45
Abstract
Objective. To evaluate the plasma levels of metalloproteinases (MMP) and their inhibitor in patients with resistant hypertension (RHTN) and type 2 diabetes mellitus (DM2) and their relationship with renal blood flow and kidney function.
Design and methods. The study included 18 patients with RHTN and DM2 and 16 individuals with RHTN without DM, who underwent offce and 24-h ambulatory blood pressure measurements, renal Doppler ultrasound, and laboratory tests (daily albuminuria, estimated glomerular fltration rate calculated by CKD-EPI formula, HbА1c and basal glycaemia levels, MMP-9, MMP-2, tissue inhibitor of MMP type 1 (TIMP1), MMP/TIMP-1 ratios).
Results. Patients with RHTN and DM2 and subjects with RHTN without DM were comparable by mean levels of metalloproteinases, TIMP-1, and their ratios. The frequency of increased MMP-9 level was similar in both groups (61 % for RHTN + DM2 group and 75 % for RHTN without DM, p > 0,05). In patients with RHTN and DM2 the increase in MMP-9 and a decrease in TIMP-1/MMP-9 ratio were associated with a reduction in renal resistive indices (MMP-9 and RI in the main renal arteries: right-sided R = –0,60, p = 0,009, left-sided R = –0,60, p = 0,008; in segmental arteries: R = –0,49, p = 0,038 on the right and R = –0,59, p = 0,012 on the left; for TIMP-1/MMP-9 and segmental arteries: R = 0,51, p = 0,028 on the right; and R = 0,46, p = 0,04 on the left). The eGFR and MMP-9 signifcantly correlated (R = 0,55, p = 0,023). Patients with increased albuminuria showed higher values of TIMP-1/MMP-2 ratio than patients with normal albuminuria (2,97 ± 0,82 и 1,58 ± 0,33 ng/mL, respectively, p = 0,03). There was a direct correlation between TIMP-1/MMP-2 ratio and basal glycaemia (R = 0,59, p = 0,018).
Conclusions. Patients with RHTN and DM2 had comparable MMP levels and their inhibitor to those in patients with RHTN without DM, which may partly reflect that extracellular matrix formation is independent from carbohydrate disorders in RHTN. In patients with RHTN and DM2 an increase in MMP-9 and a decrease in TIMP-1/MMP-9 ratio may be adaptive, since it is accompanied by improved intrarenal blood flow and renal fltration function. The increase in basal hyperglycemia is associated with the suppression of the proteolytic activity of MMP-2 related to the progression of albuminuria.
About the Authors
A. Yu. FalkovskayaRussian Federation
Alla Yu. Falkovskaya, MD, PhD, Senior Researcher, Department of Hypertension
111A Kievskaya street, Tomsk, 634012
V. F. Mordovin
Russian Federation
Viktor F. Mordovin, MD, PhD, DSc Head, Department of Hypertension
Tomsk
S. E. Pekarskiy
Russian Federation
Stanislav E. Pekarskiy, MD, PhD, Leading Researcher, Department of Hypertension
Tomsk
T. M. Ripp
Russian Federation
Tatiana M. Ripp, MD, PhD, Leading Researcher, Department of Hypertension
Tomsk
I. V. Zyubanova
Russian Federation
Irina V. Zyubanova, MD, PhD, Researcher, Department of Hypertension
Tomsk
E. S. Sitkova
Russian Federation
Ekaterina S. Sitkova, MD, PhD, Researcher, Department of Hypertension
Tomsk
V. A. Lichikaki
Russian Federation
Valeria A. Lichikaki, MD, PhD, Researcher, Department of Hypertension
Tomsk
M. A. Manukyan
Russian Federation
Musheg Manukyan, Assistant Doctor, Department of Hypertension
Tomsk
T. E. Suslova
Russian Federation
Tatiana E. Suslova, MD, PhD, Head of Department, Diagnostic Laboratory
Tomsk
A. M. Gusakova
Russian Federation
Anna M. Gusakova, MD, PhD, Researcher, Department of Diagnostic Laboratory
Tomsk
T. R. Ryabova
Russian Federation
Tamara R. Ryabova, MD, PhD, Senior Researcher, Department of Ultrasound and Functional Diagnostics
Tomsk
References
1. Hewitson TD, Holt SG, Smith ER. Progression of tubulointerstitial fbrosis and the chronic kidney disease phenotype — role of risk factors and epigenetics. Front Pharmacol. 2017;8:520. doi:10.3389/fphar.2017.00520
2. Nogueira A, Pires MJ, Oliveira PA. Pathophysiological mechanisms of renal fbrosis: a review of animal models and therapeutic strategies. InVivo. 2017;31(1):1–22. doi:10.21873/invivo.11019
3. Zhong J, Yang HC, Fogo AB. A perspective on chronic kidney disease progression. Am J Physiol Renal Physiol. 2017;312(3): F375-F384. doi:10.1152/ajprenal.00266.2016
4. Zhou D. Understanding the mechanisms of kidney fbrosis. Nat Rev Nephrol. 2016;12(2):68–70. doi:10.1038/nrneph.2015.215
5. Maduell F, Garcia-Fernandez N, Manrique J, Gonzalez A, Javier D. Unraveling new mechanisms of renal fibrosis with potential therapeutic implications. Hypertension. 2018;72(2):277– 278. doi:10.1161/HYPERTENSIONAHA.118.11043
6. Miklishanskaja SV, Mazur NA, Shestakova NV. Mechanisms of myocardial fbrosis development in normal state and in cardiovascular disease. Meditsinskij Sovet = Medical Advice. 2017;12:75–81. In Russian.
7. Poterjaeva ON. Matrix metalloproteinases: structure, regulation, role in the disease (review). Setevoe izdanie “Meditsina i Obrazovanie v Sibiri” = Medicine and Education in Siberia. 2010;5. [Electronic resource]. URL: http://ngmu.ru/cozo/mos/article/text_full.php?id=449 In Russian.
8. FontanaV, Silva PS, Gerlach RF, Tanus-Santos JE. Circulating matrix metalloproteinases and their inhibitors in hypertension. Clin Chim Acta. 2012;413(7–8):656–662. doi:10.1016/j.cca.2011.12.021
9. Castro MM, Rizzi E, Prado CM, Rossi MA, Tanus-Santos JE, Gerlach RF. Imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases in hypertensive vascular remodeling. Matrix Biol. 2010;29(3):194–201. doi:10.1016/j.matbio.2009.11.005
10. Berg G, Miksztowicz V. Metalloproteinases in the pathogenesis and progression of metabolic syndrome: potential targets for improved outcomes. Metalloproteinases in Medicine. 2015;2:51– 59. URL: http://dx.doi.org/10.2147/MNM.S88993.
11. Derosa G, D’Angel A, Tinelli C, Devangelio E, Consoli A, Miccoli R et al. Evaluation of metalloproteinase 2 and 9 levels and their inhibitors in diabetic and healthy subjects. Diab Metab. 2007;33(2):129–134. doi:10.1016/j.diabet.2006.11.008
12. Chung AW, Booth AD, Rose C, Thompson CR, Levin A, van Breemen C. Increased matrix metalloproteinase 2 activity in the human internal mammary artery is associated with ageing, hypertension, diabetes and kidney dysfunction. J Vasc Res. 2008;45 (4):357–362. doi:10.1159/000119755
13. Kologrivova IV, Suslova TE, Koshel’skaja OA, Vinnickaja IV, Trubacheva OA. System of matrix proteinases and cytokine secretion in type 2 diabetes mellitus and glucose intolerance associated with hypertension. Bulletin of Experimental Biology and Medicine. 2013;156(11):578–581. In Russian.
14. Poterjaeva ON, Russkih GS, Zubova AV, Gevorgjan MM, Usynin IF. Change in activity of matrix metalloproteinases, proinsulin concentration and C-peptide in blood serum depending on the stage of type 2 diabetes mellitus. Bulletin of Experimental Biology and Medicine. 2017;16 (12):697–700. In Russian.
15. Ritter M, de Faria AP, Barbaro N, Sabbatini AR, Corrêa NB, Brunelli V et al. Crosstalk between obesity and MMP-9 in cardiac remodelling — a cross-sectional study in apparent treatment-resistant hypertension. Blood Pressure. 2017;2(26):122–129. doi:10.1080/08037051.2016.1249336
16. Lacerda L, Faria AP, Fontana V, Moreno H, Sandrim V. Role of MMP-2 and MMP-9 in rsistance to drug therapy in patients with resistant hypertension. Arq Bras Cardiol. 2015;105(2):168–175. doi:10.5935/abc.20150060
17. Sabbatini AR, Barbaro NR, Faria AP, Ritter AMV, Modolo R, Correa NB et al. Matrix metalloproteinase-2–735C/T polymorphismis associated with resistant hypertensionin a specialized outpatient clinic in Brazil. Gene. 2017;620:23–29. doi:10.1016/j.gene.2017.04.004
18. Sabbatini AR, Barbaro NR, Faria AP, Modolo R, Ritter AMV, Pinho C et al. Increased circulating tissue inhibitor of metalloproteinase-2 is associated with resistant hypertension. J Clin Hypertens. 2016;18(10):969–975. doi:10.1111/jch.12865
19. Tan TK, Zheng G, Hsu TT, Lee SR, Zhang J, Zhao Y et al. Matrix metalloproteinase-9 of tubular and macrophage origin contributes to the pathogenesis of renal fbrosis via macrophage recruitment through osteopontin cleavage. Laboratory Investigation. 2013;93(4):434–449. doi:10.1038/labinvest.2013.3
20. Zhao H, Dong Y, Tian X, Tan TK, Liu Z, Zhao Y et al. Matrix metalloproteinases contribute to kidney fbrosis in chronic kidney diseases. World J Nephrol. 2013;2(3):84–89. doi:10.5527/wjn.v2.i3.84
21. Catania JM, Chen G, Parrish AR. Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol. 2007;292(3): F905-F911. doi:10.1152/ajprenal.00421.2006
22. Bondar’ IA, Klimontov VV. Matrix metalloproteinases and their inhibitors in the development of renal fbrosis in diabetes mellitus. Problemy Endokrinologii = Endocrinology Issues. 2012;1:39–44. In Russian.
23. Xu X, Xiao L, Xiao P, Yang S, Chen G, Liu F et al. A glimpse of matrix metalloproteinases in diabetic nephropathy. Curr Med Chem. 2014;21(28):3244–3260.
24. Li SY, Huang PH, Yang AH, Tarng DC, Yang WC, Lin CC et al. Matrix metalloproteinase-9 defciency attenuates diabetic nephropathy by modulation of podocyte functions and dedifferentiation. Kidney Int. 2014;86(2):358–369. doi:10.1038/ki.2014.67
25. Lewandowski KC, Banach E, Bieńkiewicz M, Lewiński A. Matrix metalloproteinases in type 2 diabetes and non-diabetic controls: effects of short-term and chronic hyperglycaemia. Arch Med Sci. 2011;7(2):294–303. doi: 10.5114/aoms.2011.22081
26. Mahendran KB, Sethupathy S, Perumal KK, Inmozhi R, Santha K. Plasma and urinary matrix metalloproteinase-9 as a marker for detection of nephropathy in type 2 diabetic patients. Int J Med Sci Public Health. 2015;4(10):1409–1413. doi:10.5455/ijmsph.2015.09042015292
27. Boffa JJ, Lu Y, Placier S, Stefanski A., Dussaule JC, Chatziantoniou C. Regression of renal vascular and glomerular fbrosis: role of angiotensin II receptor antagonism and matrix metalloproteinases. J Am Soc Nephrol. 2003;14(5):1132–1144. doi:10.1097/01.ASN.0000060574.38107.3B
28. Mansour SG, Puthumana J, Coca SG, Gentry M, Parikh RC. Biomarkers for the detection of renal fbrosis and prediction of renal outcomes: a systematic review. BMC Nephrology. 2017;18(1):72. doi:10.1186/s12882-017-0490-0
29. Pai AS, Giachelli CM. Matrix remodeling in vascular calcifcation associated with chronic kidney disease. Am Soc Nephrol. 2010;21(10):1637–1640. doi: 10.1681/ASN.2010040349
30. Chen Neal X, O’Neill KD, Chen X, Kiattisunthorn K, GattoneVH, Moe SM. Activation of arterial matrix metalloproteinases leads to vascular calcifcation in chronic kidney disease. Am J Nephrol. 2011;34(3):211–219. doi:10.1159/000330175
31. Tayebjee MH, Nadar S, Blann AD, Gareth BD, MacFadyen RJ, Lip GYH. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in hypertension and their relationship to cardiovascular risk and treatment. A substudy of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT). Am J Hypertens. 2004;17(9):764–769. doi:org/10.1016/j.amjhyper.2004.05.019
32. Hansson J, Vasan RS, Arnlov J, Ingelsson E, Lind L, Larsson A et al. Biomarkers of extracellular matrix metabolism (MMP-9 and TIMP-1) and risk of stroke, myocardial infarction, and cause-specifc mortality: cohort study. PLoS One. 2011;6(1):1–7. doi:10.1186/s12882-017-0490-0
33. Tepljakov AT, Andrijanova AV, Pushnikova EJu, Cuslova TE, Nikonova ES, Konakov SN et al. Tissue inhibitor of matrix metalloproteinase type 1 (TIMP-1) s an independent predictor of the ischemic myocardial remodeling in chronic heart failure. Sibirskij Meditsinskij Zhurnal = Siberian Medical Journal. 2014;29(2):28–34. In Russian.
34. Farris AB, Colvin RB. Renal interstitial fbrosis: mechanisms and evaluation. Curr Opin Nephrol Hypertens. 2012;21(3): 289–300. doi:10.1097/MNH.0b013e3283521cfa
35. Shestakova MV, Dedov II. Diabetes mellitus and chronic kidney disease. M.: OOO «Meditsinskoe informatsonnoe agentstvo»; 2009: 482 p. In Russian.
36. USRDS. 2017 Annual Data Report. Volume 1 CKD in the United States 2017; Chapter 1: CKD in the General Population: 9–30. Available from: http://www.urds.org/.
37. Oshhepkova EV, Dolgusheva JuA, Zhernakova JuV, Chazova IE, Shal’nova SA, Jarovaja EB et al. Prevalence of renal dysfunction in arterial hypertension (data of the ESSE-RF study). Sistemnye Gipertenzii = Systemic Hypertension. 2015;12(3):19–24. In Russian.
38. Kobalava ZhD, Villeval’de SV, Bagmanova NH, Batjushin MM, Orlova GM. The prevalence of the markers of chronic kidney disease in patients with arterial hypertension depending on the presence of diabetes mellitus: the results of the epidemiological study CHRONOGRAPH. Russian Cardiology Journal. 2018;2 (154):91–101. In Russian. URL: http://dx.doi.org/10.15829/1560-4071-2018-2-91-101.
39. De Nicola L, Borrelli S, Gabbai FB, Chiodini P, Zamboli P, Iodice C et al. Burden of resistant hypertension in hypertensive patients with non-dialysis chronic kidney disease. Kidney Blood Press Res. 2011;34(1):58–67. doi:10.1159/000322923
40. Viazzi F, Piscitelli P, Ceriello A, Fioretto P, Giorda C, Guida P et al. AMD-Annals Study Group. Resistant hypertension, timeupdated blood pressure values and renal outcome in type 2 diabetes mellitus. Am Heart Assoc. 2017;6(9): e006745. doi:10.1161/JAHA.117.006745
41. Vitlianova K, Georgieva J, Milanova M, Tzonev S. Blood pressure control predicts plasma matrix metalloproteinase-9 in diabetes mellitus type II Arch Med Sci. 2015;11(1):85–91. doi:10.5114/aoms.2015.49208
42. Sapienza P, Borrelli V, Sterpetti AV, Biacchi D, Venturini L, Tartaglia E et al. Statins reduce levels of metalloproteinases in patients with carotid occlusive disease. Int Angiol. 2014;33(6): 530–539.
43. Ma YL, Li WD, Lei FR, Qian AM, Zhu LW, Jiang K et al. Metformin inhibits angiogenesis in endothelial progenitor cells through inhibiting MMP2, MMP9 and uPA expression via AMPK-mTOR-autophagy pathway. Int J Clin Exp Med. 2017;10 (1):958–964.
44. Esfahanian N, Shakiba Y, Nikbin B, Soraya H, MalekiDizaji N, Ghazi-Khansari M et al. Effect of metformin on the proliferation, migration, and MMP-2 and –9 expression of human umbilical vein endothelial cells. Mol Med Rep. 2012;5(4):1068– 1074. doi:10.3892/Mmr.2012.753
45. Chen YQ, Chen G. Combined therapeutic effect and molecular mechanisms of metformin and cisplatin in human lung cancer xenografts in nude mice. J Cancer Res Ther. 2015;11(2):324– 330. doi:10.4103/0973–1482.151444
46. Rong JZ, Li L, Fei F, Luo L, Qu Y. Combined treatment of glibenclamide and CoCl2 decreases MMP9 expression and inhibits growth in highly metastatic breast cancer. Exp Clin Cancer Res. 2013;32:32. doi:[10.1186/1756-9966-32-32].
47. Wang L, Wang J, Wang Y, Fu Q, Lei YH, Nie ZY et al. Protective effect of exogenous matrix metalloproteinase 9 on chronic renal failure. Exp Ther Med. 2014;7(2):329–334. doi:10.3892/etm.2013.1409
48. Holl DE. Medical Physiology according to Gyton Hall. Transl. from English. Ed. by VI Kobrina, MM Galagudza, AE Umrjuhina. 2nd ed., updated. M.: Logosfera; 2018. 1328 s. In Russian.
49. Chang AS, Hathaway CK, Smithies O, Masao K. Transforming growth factor-1 and diabetic nephropathy. Am J Physiol Renal Physiol. 2016;310(8): F689-F696. doi:10.1152/ajprenal.00502.2015
50. Abreu BJ, de Brito Vieira WH. Metalloproteinase changes in diabetes Chapter 17 in Paul W. Ackermann and David A. Hart, editors. Metabolic influences on risk for tendon disorders, advances in experimental medicine and biology. Springer International Publishing Switzerland. 2016:185–190. doi:10.1007/978-3-319-33943-6_17
51. Zvartau NE, Zverev DA, Konradi AO. Renal denervation: to be or not to be? Arterial’naya Gipertenziya = Arterial Hypertension. 2014;20(2):125–127. In Russian.
52. Shavarov AA, Majskov VV, Kobalava ZhD. Radiofrequency sympathetic renal denervation: a new version of the old method of treatment of resistant hypertension. Kardiologiia. 2013;53(1):72–78. In Russian.
53. Mordovin VF, Pekarskij SE, Semke GV, Ripp TM, Fal’kovskaja AJu, Sitkova ES et al. Novel medical technologies for diagnosis and treatment of patients with arterial hypertension. Sibirskij Meditsinskij Zhurnal = Siberian Medical Journal. 2016;2:29–35. In Russian.
54. Sulimov VA, Rodionov AV, Svetankova AA, Deneka IJe. Renal denervation in resistant arterial hypertension. Ratsional’naja Farmakoterapija v Kardiologii = Rational Pharmacotherapy in Cardiology. 2013;9(3):274–279. In Russian.
55. Gapon LI, Mikova EV, Savel’eva NJu, Kolunin GV, Zherzhova AJu. Clinical effciency of sympathetic renal denervation in patients with resistant arterial hypertension within 1-year followup. Sistemnye Gipertenzii = Systemic Hypertension. 2017;14 (2):41–44. In Russian.
56. Shugushev ZH, Maksimkin DA, Rjumina AS. Opportunities for treatment of resistant hypertension. Sistemnye Gipertenzii = Systemic Hypertension. 2018;15(2):14–22. In Russian.
57. Zjubanova IV, Mordovin VF, Fal’kovskaja AJu, Pekarskij SE, Ripp TM, Lichikaki VA et al. Dynamics of biochemistry parameters of vascular fbrosis after renal denervation in patients with resistant arterial hypertension. Sibirskij Meditsinskij Zhurnal = Siberian Medical Journal. 2016;2:18–22. In Russian.
Review
For citations:
Falkovskaya A.Yu., Mordovin V.F., Pekarskiy S.E., Ripp T.M., Zyubanova I.V., Sitkova E.S., Lichikaki V.A., Manukyan M.A., Suslova T.E., Gusakova A.M., Ryabova T.R. Matrix metalloproteinases in patients with resistant hypertension and type 2 diabetes mellitus: relation with renal blood flow and kidney function. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2019;25(1):34-45. (In Russ.) https://doi.org/10.18705/1607-419X-2019-25-1-34-45