JnK inhibitor 11H-indeno [1,2-b]chinoxalin-11-on-oxim sodium salt reduces the development of diastolic dysfunction in spontaneously hypertensive rats
https://doi.org/10.18705/1607-419X-2019-25-5-520-526
Abstract
Background. In arterial hypertension (HTN), diastolic dysfunction (DD) of the left ventricle (LV) makes a major contribution to the development of heart failure, so the treatment of DD is an important task. The role of the JNK-dependent pathway in myocardial remodeling in HTN is shown.
Objective. To evaluate the effect of the new JNK inhibitor IQ-1S (11H-indeno [1,2-b]quinoxalin-11-one oxime sodium salt) on parameters of cardiac activity in SHR rats during the period of stable HTN and the formation of DD.
Design and methods. The experiments were carried out on 5 normotensive Wistar-Kyoto (WKY) rats and 10 spontaneously hypertensive rats (SHRs); the experiments included animals that reached the age of 12 weeks. IQ- 1S (50 mg/kg) was administered intragastrically daily to the SHRs of the experimental group (n = 5) for 6 weeks. The WKY control animals (n = 5) and the SHRs (n = 5) received an equivolume amount of distilled water. Systolic blood pressure (SBP) was measured before and after the course of IQ-1S. At the end of the IQ-1S course, body mass (BM) and left ventricular mass (LVM) were evaluated, and contractile myocardial activity (intracardiac sensor) was recorded.
Results. Before and after the IQ-1S course, the values of SBP in the control SHRs were higher than in WKY rats by 30 % and 53 %. After the administration of IQ-1S SHRs showed significantly lower SBP (by 13 %), the LVM/BM index (by 5 %) and the end-diastolic LV pressure (by 40 %) compared to the control SHRs.
Conclusions. Our results confirm the ability of the JNK inhibitor IQ-1S to reduce blood pressure, myocardial hypertrophy and suppress the development of diastolic LV dysfunction in SHRs with the stable HTN.
About the Authors
M. B. PlotnikovRussian Federation
Mark B. Plotnikov - MD, PhD, DSc, Professor, Head, Department of Pharmacology.
3 Lenin avenue, Tomsk, 634028, Phone: 8(382)241-83-73
O. I. Aliev
Russian Federation
Oleg I. Aliev - MD, PhD, DSc, Principal Researcher, Laboratory of Circulation Pharmacology
A. Yu. Shamanaev
Russian Federation
Aleksandr Yu. Shamanaev - MD, PhD, Junior Researcher, Laboratory ofCirculation Pharmacology
A. V. Sidekhmenova
Russian Federation
Anastasia V Sidekhmenova - MD, PhD, Researcher, Laboratory of Circulation Pharmacology
A. M. Anishchenko
Russian Federation
Anna M. Anishchenko - MD, PhD, DSc, Senior Researcher, Laboratory ofCirculation Pharmacology
А. I. Khlebnikov
Russian Federation
Andrei I. Khlebnikov - MD, PhD, DSc, Professor, Kizhner Research Center, TPU; Research Institute of Biological Medicine, ASU
I. A. Schepetkin
United States
Igor A. Schepetkin - MD, PhD, Senior Researcher, Kizhner Research Center TPU
D. N. Atochin
United States
Dmitriy N. Atochin - MD, PhD, Head, Laboratory for the Study of Neuroprotection Mechanisms, Kizhner Research Center, TPU; Assistant Professor of Medicine, Cardiovascular Research Center, Cardiology Division, Department of Medicine, MGH
References
1. Nadruz W, Shah AM, Solomon SD. Diastolic dysfunction and hypertension. Med Clin North Am. 2017;101(1):7—17. doi:10.1016/j.mcna.2016.08.013
2. Sopontammarak S, Aliharoob A, Ocampo C, Arcilla RA, Gupta MP, Gupta M. Mitogen-activated protein kinases (p38 and c-Jun NH2-terminal kinase) are differentially regulated during cardiac volume and pressure overload hypertrophy. Cell Biochem. Biophys. 2005;43(1):61-76.
3. Molkentin JD, Dorn IG. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol. 2001;63:391— 426. doi:10.1146/annurev.physiol.63.1.391
4. Sadoshima J, Montagne O, Wang Q, Yang G, Warden J, Liu J et al. The MEKK1-JNK pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy. J Clin Invest. 2002;110(2):271-279. doi:10.1172/JCI14938/
5. Izumi Y, Kim S, Murakami T, Yamanaka S, Iwao H. Cardiac mitogen-activated protein kinase activities are chronically increased in stroke-prone hypertensive rats. Hypertension. 1998;31(1):50—56.
6. Vogel V, Bokemeyer D, Heller J, Kramer HJ. Cardiac hypertrophy in the Prague-hypertensive rat is associated with enhanced JNK2 but not ERK tissue activity. Kidney Blood Press Res. 2001;24(1):52-56. doi:10.1159/000054206
7. Choukroun G, Hajjar R, Kyriakis JM, Bonventre JV, Rosenzweig A, Force T. Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy. J Clin Invest. 1998;102(7):1311-1321.
8. Yano M, Kim S, Izumi Y, Yamamaka S, Iwao H. Differential activation of cardiac c-jun amino-terminal kinase and extracellular signal-regulated kinase in angiotensin II-mediated hypertension. Circ Res. 1998;83(7):752-760.
9. Duguay D, deBlois D. Differential regulation of Akt, caspases and MAP kinases underlies smooth muscle cell apoptosis during aortic remodelling in SHR treated with amlodipine. Br J Pharmacol. 2007;151(8):1315-1323. doi:10.1038/sj.bjp.0707334
10. Huang XY, Chen CX. Effect of oxymatrine, the active component from Radix Sophorae flavescentis (Kushen), on ventricular remodeling in spontaneously hypertensive rats. Phytomedicine. 2013;20(3-4):202-212. doi: 10.1016/j.phymed.2012.10.012
11. Wu Y, Qian Z, Fu S, Yue Y, Li Y, Sun R et al. Icarisidell improves left ventricular remodeling in spontaneously hypertensive rats by inhibiting the ASK1-JNK/p38 signaling pathway. Eur J Pharmacol. 2018;819:68-79. doi:10.1016/j.ejphar.2017.11.035
12. Schepetkin IA, Kirpotina LN, Khlebnikov AI, Hanks TS, Kochetkova I, Pascual DW et al. Identification and characterization of a novel class of c-Jun N-terminal kinase inhibitors. Mol Pharmacol. 2012;81(6):832-845. doi:10.1124/mol.111.077446
13. Schepetkin IA, Kirpotina LN, Hammaker D, Kochetkova I, Khlebnikov AI, Lyakhov SA et al. Anti-inflammatory effects andjoint protection in collagen-induced arthritis after treatment with IQ- 1S, a selective c-Jun N-terminal kinase inhibitor. J Pharmacol Exp Ther. 2015;353(3):505-516. doi:10.1124/jpet.114.220251
14. Kobayashi T, Hamada M, Okayama H, Shigematsu Y, Sumimoto T, Hiwada K. Contractile properties of left ventricular myocytes isolated from spontaneously hypertensive rats: effect of angiotensin II. J Hypertens. 1995;13(12Pt2):1803-1807.
15. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part I: Diagnosis, prognosis, and measurements of diastolic function. Circulation. 2002;105 (11):1387-1393.
16. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42(6):1206-1252. doi:10.1161/01.HYP.0000107251.49515.c2
17. Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;28(2):194-202.
18. Ginelli P, Bella JN. Treatment of diastolic dysfunction in hypertension. Nutr Metab Cardiovasc Dis. 2012;22(8):613-618. doi:10.1016/j.numecd.2012.04.016
19. Lalande S, Johnson BD. Diastolic dysfunction: a link between hypertension and heart failure. Drugs Today (Barc). 2008;44(7):503-513. doi:10.1016/j.mcna.2009.02.013
20. Weber KT. Are myocardial fibrosis and diastolic dysfunction reversible in hypertensive heart disease? Congest Heart Fail. 2005;11(6):322-324.
21. Boluyt MO, Bing OHL, Lakatta EG. The ageing spontaneously hypertensive rat as a model of the transition from stable compensated hypertrophy to heart failure. Eur Heart J. 1995;16(Suppl N):19-30.
22. Slama M, Ahn J, Varagic J, Susic D, Frohlich ED. Longterm left ventricular echocardiographic follow-up of SHR and WKY rats: effects of hypertension and age. Am J Physiol Heart Circ Physiol. 2004;286(1): H181-H185.
23. Nishimura H, Kubo S, NishiokaA, Imamura K, Kawamura K, Hasegawa M. Left ventricular diastolic function of spontaneously hypertensive rats and its relationship to structural components of the left ventricle. Clin Sci. 1985;69(5):571-580.
24. Plotnikov MB, Chernysheva GA, Aliev OI, Smol’iakova VI, Fomina TI, Osipenko AN et al. Protective effects of new c-Jun N-terminal kinase inhibitor in the model of global cerebral ischemia in rats. Molecules. 2019;24(9):1722. doi:10.3390/molecules24091722
Review
For citations:
Plotnikov M.B., Aliev O.I., Shamanaev A.Yu., Sidekhmenova A.V., Anishchenko A.M., Khlebnikov А.I., Schepetkin I.A., Atochin D.N. JnK inhibitor 11H-indeno [1,2-b]chinoxalin-11-on-oxim sodium salt reduces the development of diastolic dysfunction in spontaneously hypertensive rats. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2019;25(5):520-526. (In Russ.) https://doi.org/10.18705/1607-419X-2019-25-5-520-526