Arterial hypertension: The role of gut microbiota
https://doi.org/10.18705/1607-419X-2019-25-5-460-466
Abstract
Pathogenesis of arterial hypertension (HTN) was predominantly associated with genetics and epigenetics, environment and disturbances in homeostasis systems (autonomous nervous system, immunity, renin-angiotensin system) for a long time. Gut microbiota has recently emerged as a self-controlled factor contributing to or limiting the development of HTN. New data on the role of gut bacteria in the development of HTN, direct blood pressure regulation as well as impact on epigenetics, immunity and renin-angiotensin-aldosterone system of its metabolites are presented.
Keywords
About the Authors
N. E. BarantsevichRussian Federation
Natalia E. Barantsevich - MD, Researcher, Unit of Nosocomial Infections.
St Petersburg
A. O. Konradi
Russian Federation
Aleksandra O. Konradi - MD, PhD, DSc, Professor, Deputy Director General on Research.
St Petersburg
E. P. Barantsevich
Russian Federation
Elena P. Barantsevich - MD, PhD, DSc, Head, Unit of Nosocomial Infections.
2 Akkuratov street, St Petersburg, 197341
References
1. Wise IA, Charchar F J. Epigenetic modifications in essential hypertension. Int J Mol Sci. 2016;17(4):451. doi:10.3390/ijms17040451
2. Ahn SY, Gupta C. Genetic programming of hypertension. Front Pediatr. 2017;5:285. doi:10.3389/fped.2017.00285
3. Aroor AR, Demarco VG, Jia G, Sun Z, Nistala R, Meinin-ger GA et al. The role of tissue Renin-Angiotensin aldosterone system in the development of endothelial dysfunction and arterial stiffness. Front Endocrinol. 2013;4:161. doi:10.3389/fendo.2013.00161
4. Young CN, Davisson RL. Angiotensin-II, the brain, and hypertension: an update. Hypertension. 2015;66(5):920-926.
5. Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114(11):1804-1814. doi:10.1161/HYPERTENSIONAHA.115.03624
6. Harrison DG. The immune system in hypertension. Trans Am Clin Climatol Assoc. 2014;125:130-138. doi:10.1161/HYPERTENSIONAHA.115.03624
7. Zubcevic J, Richards EM, Yang T, Kim S, Sumners C, Pepine CJ et al. Impaired autonomic nervous system-microbiome circuit in hypertension. Circ Res. 2019;125(1): 104-116. doi:10.1161/CIRCRESAHA.119.313965
8. Roager HM, Licht TR, Poulsen SK, Larsen TM, Bahla MI. Microbial enterotypes, inferred by the prevotella-to-bacteroides ratio, remained stable during a 6-month randomized controlled diet intervention with the new Nordic diet. Appl Environ Microbiol. 2014;80(3):1142-1149. doi:10.1128/AEM.03549-13
9. Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Car-vajal JM et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65(6): 1331-1340. doi:10.1161/HYPERTENSIONAHA.115.05315
10. Mell B, Jala VR, Mathew AV, Byun J, Waghulde H, Zhang Y et al. Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genom. 2015;47(6): 187-197. doi:10.1152/physiolgenomics.00136.2014
11. Durgan DJ, Ganesh BP, Cope JL, Ajami NJ, Phillips SC, Petrosino JF et al. Role of the gut microbiome in obstructive sleep apnea-induced hypertension. Hypertension. 2016;67(2):469-474. doi:10.1161/HYPERTENSIONAHA.115.06672
12. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14. doi:10.1186/s40168-016-0222-x
13. Santisteban MM, Qi Y, Zubcevic J, Kim S, Yang T, Shenoy V et al. Hypertension-linked pathophysiological alterations in the gut. Circ Res. 2017;120(2):312-323. doi:10.1161/CIRCRESAHA.116.309006
14. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551(7682):585-589. doi:10.1038/nature24628
15. Toral M, Robles-Vera I, de la Visitacion N, Romero M, Yang T, Sanchez M et al. Critical role of interaction gut microbiota — sympathetic nervous system in regulation of blood pressure. Front Physiol. 2019;10:231. doi:10.3389/fphys.2019.00231
16. Yang T, Richards EM, Pepine CJ, Raizada MK. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol. 2018;14(7):442-456. doi:10.1038/s41581-018-0018-2
17. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA. 2013;110(11):4410-4415. doi:10.1073/pnas.1215927110
18. Natarajan N, Hori D, Flavahan S, Steppan J, Flavahan NA, Berkowitz DE et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol Genom. 2016;48(11):826-834. doi:10.1152/physio-lgenomics.00089.2016
19. Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017;135(10):964-977. doi:10.1161/CIRCULATIONAHA.116.024545
20. Aleixandre A, Miguel M. Dietary fiber and blood pressure control. Food Fund. 2016;7(4):1864-1871. doi:10.1039/c5fo 00950b
21. Whelton SP, Hyre AD, Pedersen B, Yi Y, Whelton PK, He J et al. Effect of dietary fiber intake on blood pressure: a metaanalysis of randomized, controlled clinical trials. J Hypertens. 2005;23(3):475-481.
22. Khalesi S, Sun J, Buys N, Jayasinghe R. Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension. 2014;64 (4):897-903. doi:10.1161/HYPERTENSIONAHA.114.03469
23. Qi Y, Aranda JM, Rodriguez V, Raizada MK, Pepine CJ. Impact of antibiotics on arterial blood pressure in a patient with resistant hypertension—a case report. Int J Cardiol. 2015;201:157-158. doi:10.1016/j.ijcard.2015.07.078
24. Jose PA, Raj D. Gut microbiota in hypertension. Curr Opin Nephrol Hypertens. 2015;24(5):403-409. doi:10.1097/MNH.0000000000000149
25. Schlaich MP, Lambert E, Kaye DM, Krozowski Z, Campbell DJ, Lambert G et al. Sympathetic augmentation in hypertension: role of nerve firing, norepinephrine reuptake, and angiotensin neuromodulation. Hypertension. 2004;43(2):169-175.
26. Ley RE, Tumbaugh PJ, Klein S, Gordon JI. Microbial ecology: Human gut microbes associated with obesity. Nature. 2006;444(7122):1022-1023.
27. Wenzel P, Knorr M, Kossmann S, Stratmann J, Hausding M, Schuhmacher S et al. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation. 2011;124(12):1370-1381. doi:10.1161/CIRCULATIONAHA.l11.034470
28. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007; 204(10):2449-2460.
29. Chan CT, Sobey CG, Lieu M, Ferens D, Kett MM, Diep Henry et al. Obligatory role for b cells in the development of angiotensin II-dependent hypertension. Hypertension. 2015;66:1023-1033.
30. Pedrinelli R, Dell’Omo G, Di Bello V, Pellegrini G, Pucci L, Del Prato S et al. Low-grade inflammation and microalbuminuria in hypertension. Arterioscler Thromb Vasc Biol. 2004;24(12):2414-2419.
31. Costello-White R, Ryff CD, Coe CL. Aging and low-grade inflammation reduce renal function in middle-aged and older adults in Japan and the USA. Age. 2015;37(4):9808. doi:10.1007/s11357-015-9808-7
32. Santisteban MM, Ahmari N, Carvajal JM, Zingler MB, Qi Y, Kim S et al. Involvement of bone marrow cells and neuroinflammation in hypertension. Circ Res. 2015;117(2):178-191. doi:10.1161/CIRCRESAHA.117.305853
33. Callen IR, Limarzi LR. Blood and bone marrow studies in renal diseases. Am J Clin Pathol. 1950;20(1):3-23.
34. Jung C, Hugot JP, Barreau F. Peyer’s patches: the immune sensors of the intestine. Int J Inflam. 2010;2010:823710. doi:10.4061/2010/823710
35. Wu IW, Hsu KH, Lee CC, Sun CY, Hsu HJ, Tsai CJ et al. p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol Dial Transplant. 2011;26(3):938-947. doi:10.1093/ndt/gfq580
36. Lin CJ, Chen HH, Pan CF, Chuang CK, Wang TJ, Sun FJ et al. p-Cresylsulfate and indoxyl sulfate level at different stages of chronic kidney disease. J Clin Lab Anal. 2011;25(3):191-197. doi:10.1002/jcla.20456
37. Magnusson M, Magnusson KE, Sundqvist T, Denneberg T. Increased intestinal permeability to differently sized polyethylene glycols in uremic rats: effects of low- and high-protein diets. Nephron. 1990;56(3):306-311.
38. Magnusson M, Magnusson KE, Sundqvist T, Denneberg T. Impaired intestinal barrier function measured by differently sized polyethylene glycols in patients with chronic renal failure. Gut. 1991;32(7):754-759.
39. de Almeida Duarte JB, de Aguilar-Nascimento JE, Nascimento M, Nochi RJ. Bacterial translocation in experimental uremia. Urol Res. 2004;32(4):266-270.
40. Wang F, Jiang H, Shi K, Ren Y, Zhang P, Cheng S et al. Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrology. 2012;17(8):733-738. doi:10.1111/j.1440-1797.2012.01647.x
41. Shi K, Wang F, Jiang H, Liu H, Wei M, Wang Z et al. Gut bacterial translocation may aggravate microinflammation in hemodialysis patients. Dig Dis Sci. 2014;59(9):2109-2117. doi:10.1007/s10620-014-3202-7
42. Ito S, Yoshida M. Protein-bound uremic toxins: new culprits of cardiovascular events in chronic kidney disease patients. Toxins. 2014;6(2):665-678. doi:10.3390/toxins6020665
43. Sun CY, Chang SC, Wu MS. Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition. PLoS ONE. 2012;7(3):e34026. doi:10.1371/journal.pone.0034026
44. Tang WHW, Hazen SL. Microbiome, Trimethylamine N-Oxide (TMAO), and cardiometabolic disease. Transl Res. 2017;179:108-115. doi:10.1016/j.trsl.2016.07.007
45. Cho CE, Caudill MA. Trimethylamine-N-Oxide: friend, foe, or simply caught in the cross-fire? Trends Endocrinol Metab. 2017;28(2):121-130. doi:10.1016/j.tem.2016.10.005
46. Scheppach W. Effects of short chain fatty acids on gut morphology and function. Gut. 1994;35 (1Suppl): S35-38.
47. SirichTL, PlummerNS, Gardner CD, HostetterTH, MeyerTW. Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin J Am Soc Nephrol. 2014;9(9): 1603-1610. doi:10.2215/CJN.00490114
48. Andrade-Oliveira V,Amano MT, Correa-Costa M, CastoldiA, Felizardo RJ, de Almeida DC et al. Gut bacteriaproducts prevent AKI induced by ischemia-reperfusion. J Am Soc Nephrol. 2015;26 (8):1877-1888. doi:10.1681/ASN.2014030288
49. Ma J, Li H. The role ofgut microbiota in atherosclerosis and hypertension. Front Pharmacol. 2018;9:1082. doi:10.3389/fphar.2018.01082
50. Everard A, Cani PD. Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol. 2013;27(1):73-83. doi:10.1016/j.bpg.2013.03.007
51. Blake GJ, Rifai N, Buring JE, Ridker PM. Blood pressure, C-reactive protein, and risk of future cardiovascular events. Circulation. 2003;108(24):2993-2999.
52. Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effectsof butyrate in intestinal and extraintestinal diseases. World J Gastroenterol. 2011;17(12):1519-1528. doi:10.3748/wjg.v17.i12.1519
53. Vieira EL, Leonel AJ, Sad AP, Beltrao NR, Costa TF, Ferreira TM. Oral administration of sodiumbutyrate attenuates inflammation and mucosal lesion in experimentalacute ulcerative colitis. J Nutr Biochem. 2012;23(5):430-436. doi:10.1016/j.jnutbio.2011.01.007
54. Richards EM, Pepine CJ, Raizada MK, Kim S. The gut, its microbiome, and hypertension. Curr Hypertens Rep. 2017;19 (4):36. doi:10.1007/s11906-017-0734-1
Review
For citations:
Barantsevich N.E., Konradi A.O., Barantsevich E.P. Arterial hypertension: The role of gut microbiota. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2019;25(5):460-466. (In Russ.) https://doi.org/10.18705/1607-419X-2019-25-5-460-466