Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

The relationship between the indicators of the retina condition and other target organ changes in uncomplicated essential hypertension

https://doi.org/10.18705/1607-419X-2020-26-4-410-420

Abstract

Background. Changes in retinal microcirculation are considered a subtle indicator of the other target organ damage in hypertension and might have prognostic value.

Objective. To establish the relationship between diameters of retinal arterioles and venules, foveal avascular zone (FAZ) area, subfoveal choroid thickness with parameters of left heart and kidneys in middle-aged patients with essential hypertension (EH) stage I-II.

Design and methods. A total of 115 people (86 males, 29 females) aged 45-59 years were examined and divided into 2 groups. The main group consisted of 70 patients with EH stage I or II. The control group comprised 45 normotensive practically healthy individuals. Patients with diabetes mellitus, impaired liver function, clinically significant ophthalmic pathology were not included. The following data were analyzed: anamnesis including smoking status; routine blood hemodynamic and biochemical parameters, serum procollagen III N-terminal propeptide (PIIINP); albumin-creatinine ratio in a single morning portion of urine, diurnal albuminuria; parameters of 24-h ambulatory blood pressure monitoring; quantitative electrocardiography (ECG) markers of left ventricular hypertrophy; transthoracic echocardiography; fundus state. Based on the scanning laser ophthalmoscopy, the central retinal arterial (CRAE) and venous (CRVE) equivalents, arteriovenous ratio (AVR) were calculated. Using the method of optical coherence tomography angiography, we determined the FAZ area and subfoveal choroid thickness. Statistical data were processed using the StatSoft Statistica 10.

Results. Compared with normotensive individuals, patients with hypertension were characterized by lower values of CRAE (p = 0,009), larger FAZ area  (p = 0,019), and comparable values of CRVE, AVR, subfoveal choroid thickness (p > 0,05 for each indicator). Correlation analysis showed that in hypertensive AVR correlated with low-density lipoprotein cholesterol level (r = -0,3; p < 0,05); FAZ area with female gender (r = 0,42; p < 0,05); FAZ area with PIIINP level (r = 0,3; p < 0,05); FAZ area with diurnal albuminuria (r = 0,37; p < 0,05); CRVE with R wave amplitude in aVL lead of ECG (r = 0,31; p < 0,05); CRAE with left atrial volume index (r = -0,3; p < 0,05); subfoveal choroid thickness with age (r= -0,3; p = 0,01).

Conclusions. Middle-aged patients with uncomplicated EH are characterized by the lower CRVE values and larger FAZ area compared to normotensive individuals. In EH stage I-II, retinal microcirculation parameters are associated with indicators reflecting the other target organ damage, in particular, the left atrial volume index, R wave amplitude in aVL lead of the standard ECG, diurnal albuminuria, and serum PIIINP concentration.

About the Authors

A. V. Barsukov
Military Medical Academy named after S.M. Kirov
Russian Federation

Anton V. Barsukov - MD, PhD, DSc, Professor, Deputy Chief, Department of Internal Diseases.

St Petersburg


K. A. Shcherbakova
Military Medical Academy named after S.M. Kirov
Russian Federation

Ksenia Shcherbakova - MD, Cardiologist, Department of Internal Diseases.

St Petersburg


D. S. Maltsev
Military Medical Academy named after S.M. Kirov
Russian Federation

Dmitrii S. Maltsev - MD, PhD, Ophtalmologist, Department of Ophthalmology.

St Petersburg



M. A. Burnasheva
Military Medical Academy named after S.M. Kirov
Russian Federation

Maria A. Burnasheva - MD, Ophtalmologist, Department of Ophthalmology.

St Petersburg



A. N. Kulikov
Military Medical Academy named after S.M. Kirov
Russian Federation

Alexei N. Kulikov - MD, PhD, DSc, Associate Professor, Chief, Department of Ophthalmology.

St Petersburg



References

1. Neves M, Virdis A, Oigman W. Target organ damage in hypertension. Int J Hypertens. 2012;2012:454508. doi:10.1155/2012/454508

2. Ikram MK, Ong YT, Cheung CY, Wong TY. Retinal vascular caliber measurements: clinical significance, current knowledge and future perspectives. Ophthalmologica. 2013;229(3):125—136. doi:10.1159/000342158

3. Wong TY, Islam FM, Klein R, Klein BE, Cotch MF, Castro C et al. Retinal vascular caliber, cardiovascular risk factors, and inflammation: the multi-ethnic study of atherosclerosis (MESA). Invest Ophthalmol Vis Sci. 2006;47(6):2341-2350.

4. Grassi G, Heagerty A, Kjeldsen S, Laurent S, Ruilope N, Rynkiewicz A et al. Guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007;25(6):1105-1187.

5. Breslin D, Gifford J, Fairbairn JF, Kearns TP. Prognostic importance of ophthalmoscopic findings in essential hypertension. J Am Med Assoc. 1966;195(5):335-338.

6. Van den Born B, Hulsman C, Hoekstra J, Schlingemann R, van Montfrans G. Value of routine fundoscopy in patients with hypertension: systematic review. Br Med J. 2005;9(331):73.

7. Barsukov AV, Korneychuk NN, Pesikin IN, Gordienko AV, Khubulava GG. Norepinephrine-secreting paraganglioma: a clinical case. Arterial’naya Gipertenziya = Arterial Hypertension. 2017;23(3):231-242. doi:10.18705/1607419X-2017-23-3-231-242. In Russian.

8. Samara WA, Shahlaee A, Adam MK, Khan MA, Chiang A, Maguire JI et al. Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity. Ophthalmology. 2017;124(2):235-244. doi:10.1016/j.ophtha.2016.10.008

9. Iafe NA, Phasukkijwatana N, Chen X, Sarraf D. Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(13):5780-5787. doi:10.1167/iovs.16-20045

10. Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol. 2009;148(3):445450. doi:10.1016/j.ajo.2009.04.029

11. Donati S, Maresca AM, Cattaneo J, Grossi A, Mazzola M, Caprani SM et al. Optical coherence tomography angiography and arterial hypertension: a role in identifying subclinical microvascular damage? Eur J Ophthalmol. 2019:1120672119880390. doi:10.1177/1120672119880390

12. Burnasheva MA, Maltsev DS, Kulikov AN, Sherbakova KA, Barsukov AV. Association of chronic paracentral acute middle maculopathy lesions with hypertension. Ophthalmol Retina. 2019: S 2468-6530(19)30665-7. doi:10.1016/j.oret.2019.12.001

13. Chazova IE, Zhernakova YuV (on behalf of the experts). Clinical guidelines. Diagnosis and treatment of arterial hypertension. Systemic Hypertension. 2019;16(1):6-31. doi:10.26442/2075082X.2019.1.190179. In Russian.

14. Agabiti E, France MA, Uk AD, Germany FM, Kerins M, Germany RK et al. ESC/ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension. Eur Heart J. 2018;39(33):30213104. doi:10.1097/HJH.0000000000001940

15. Heitmar R, Kalitzeos A, Panesar V Comparison of two formulas used to calculate summarized retinal vessel calibers. Optom Vis Sci. 2015;92(11):1085-1091. doi:10.1097/OPX.0000000000000704

16. Kraus MF, Potsaid B, Mayer MA, Bock R, Baumann B, Liu JJ et al. Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns. Biomed Opt Express. 2012;3(6):1182-1199. doi:10.1364/BOE.3.001182

17. Bhanushali D, Anegondi N, Gadde S, Srinivasan P, Chidambara L, Yadav N et al. Linking retinal microvasculature features with severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):519-525.

18. Shahlaee A, Samara WA, Hsu J, Say EA, Khan MA, Sridhar J et al. In vivo assessment of macular vascular density in healthy human eyes using optical coherence tomography angiography. Am J Ophthalmol. 2016;165:39-46. doi:10.1016/j.ajo.2016.02.018

19. Liew G, Sharrett AR, Wang JJ, Klein R, Klein BE, Mitchell P et al. Relative importance of systemic determinants of retinal arteriolar and venular caliber: the atherosclerosis risk in communities study. Arch Ophthalmol. 2008;126(10):1404-1410. doi:10.1001/archopht.126.10.1404

20. von Hanno T, Вertelsen G, Sj0lie A, Mathiesen EB. Retinal vascular calibres are significantly associated with cardiovascular risk factors: the Troms0 Eye Study. Acta Ophthalmol. 2014;92(1):40-46. doi:10.1111/aos.12102

21. Sun C, Wang JJ, Mackey DA, Wong TY. Retinal vascular caliber: systemic, environmental, and genetic associations. Surv Ophthalmol. 2009;54(1):74-95.

22. Levy BI, Schiffrin EL, Mourad JJ, Agostini D, Vicaut E, Safar ME et al. Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation. 2008;118(9):968-976. doi:10.1161/CIRCULATIONAHA.107.763730

23. Ding J, Waic KL, McGeechan K, Ikram MK, Kawasaki R, Xie J et al. Retinal vascular caliber and the development of hypertension: a meta-analysis of individual participant data. J Hypertens. 2014;32(2):207-215. doi:10.1097/HJH.0b013e32836586f4

24. Cuspidi C, Negri F, Giudici V, Sala C. Retinal changes and cardiac remodelling in systemic hypertension. Ther Adv Cardiovasc Dis. 2009;3(3):205-214. doi:10.1177/1753944709103220

25. Varghese M,Adhyapak SM, Thomas T, Sunder M, Varghese K. The association of severity of retinal vascular changes and cardiac remodelling in systemic hypertension. Ther Adv Cardiovasc Dis. 2016;10(4):224-230. doi:10.1177/1753944716630869

26. Kanar B, §im§ek EE, Kanar S. Left atrial volume changes is an early marker of end-organ damage in essential hypertension: a multidisciplinary approach to an old problem. Am J Card. 2018;121(8):101—102. doi:10.1016/j.amjcard.2018.03.235

27. Huang QX, Zhu PL, Huang F, Lin F, Gao ZH, Chen FL et al. The relationship between association of microalbuminuria and retinal vessel diameter in population with essential hypertension. Zhonghua Nei Ke Za Zhi. 2013;52(4):309-312.

28. Kangwagye P, Rwebembera J, Wilson T, BajunirweF. Microalbuminuria and Retinopathy among Hypertensive Nondiabetic Patients at a Large Public Outpatient Clinic in Southwestern Uganda. Int J Nephrol. 2018(2018):8. doi.org/10.1155/2018/4802396

29. Meyer M, Klein B, Klein R, Palta P, Sharrett AR, Heiss G et al. Central arterial stiffness and retinal vessel calibers the Atherosclerosis Risk in Communities Study-Neurocognitive Study. J Hypertens. 2020;38(2):266-273. doi:10.1097/HJH.0000000000002252

30. Wong T, Klein R, Sharrett A, Duncan B, Couper D, Tielsch J et al. Retinal arteriolar narrowing and risk of coronary heart disease in men and women. The Atherosclerosis Risk in Communities Study. J Am Med Assoc. 2002;287(9):1153-1159.

31. Patton N, Aslam T, Macgillivray T, Pattie A, Deary IJ, Dhillon B. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat. 2005;206 (4):319-348.

32. Leung H, Wang JJ, Rochtchina E, Wong TY, Klein R, Mitchell P. Impact of current and past blood pressure on retinal arteriolar diameter in an older population. J Hypertens. 2004;22(8): 1543-1549.

33. Lim HB, Kim YW, Nam KY, Ryu CK, Jo YJ, Kim JY. Signal strength as an important factor in the analysis of peripapillary microvascular density using optical coherence tomography angiography. Ski Rep. 2019;9(1):16299. doi:10.1038/s41598-01952818-x

34. Hua D, Xu Y, Zeng X, Yang N, Jiang M, Zhang X et al. Use of optical coherence tomography angiography for assessment of microvascular changes in the macula and optic nerve head in hypertensive patients without hypertensive retinopathy. Microvasc Res. 2019;129:103969. doi:10.1016/j.mvr.2019.103969

35. AttaAllah HR, Mohamed AAM, Ali MA. Macular vessels density in diabetic retinopathy: quantitative assessment using optical coherence tomography angiography. Int Ophthalmol. 2019;39(8):1845-1859. doi:10.1007/s10792-018-1013-0

36. Sato R, Kunikata H, Asano Т, Aizawa N, Kiyota N, Shiga Y et al. Quantitative analysis of the macula with optical coherence tomography angiography in normal Japanese subjects: The Taiwa Study. Sci Rep. 2019;9(1):8875. doi:10.1038/s41598-019-45336-3

37. Drapkina OM, Gegenava BB. N-terminal propeptide of collagen type III as a proposed marker of myocardial fibrosis in type 2 diabetes. Card Ther Prev. 2018;17(3):17-21. In Russian.

38. Ghoul BE, Squalli T, Servais A, Elie C, Meas-Yedid V, Trivint C et al. Urinary procollagen III aminoterminal propeptide (PIIINP): a fibrotest for the nephrologist. Clin J Am Soc Nephrol. 2010;5(2):205-210. doi:10.2215/CJN.06610909

39. Lieb W, Song RJ, Xanthakis V, Vasan RS. Association of circulating tissue inhibitor of metalloproteinases-1 and procollagen type III aminoterminal peptide levels with incident heart failure and chronic kidney disease. J Am Heart Association. 2019;8(7): e011426. doi:10.1161/JAHA.118.011426

40. Wang YC, Lee JK, Lin WC, Wu V The serum concentrations of procollagen propeptides in hypertensive patients with or without diabetes. Acta Cardiol Sin. 2008;24:198-203.

41. Agarwal I, Arnold A, Glazer NL, Barasch E, Djousse L, Fitzpatrick AL et al. Fibrosis-related biomarkers and large and small vessel disease: the Cardiovascular Health Study. Atherosclerosis. 2015;239(2):539-546. doi:10.1016/j.atherosclerosis.2015.02.020

42. Covas DT, Panepucci RA, Fontes AM, Silva WA, Orellana MD, Freitas MC et al. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD 146+ perivascular cells and fibroblasts. Exp Hematol. 2008;36(5):642-654. doi:10.1016/j.exphem.2007.12.015


Review

For citations:


Barsukov A.V., Shcherbakova K.A., Maltsev D.S., Burnasheva M.A., Kulikov A.N. The relationship between the indicators of the retina condition and other target organ changes in uncomplicated essential hypertension. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2020;26(4):410-420. https://doi.org/10.18705/1607-419X-2020-26-4-410-420

Views: 1160


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)