Preview

Артериальная гипертензия

Расширенный поиск

Вариабельность артериального давления — регулярные и нерегулярные волны

https://doi.org/10.18705/1607-419X-2020-26-6-612-619

Полный текст:

Аннотация

В обзоре представлены данные о регулярных и нерегулярных волнах артериального давления (АД), регистрируемых при его неинвазивной и инвазивной (внутриартериальной) регистрации. Описаны регулярные пульсовые волны, волны Траубе–Геринга (волны второго порядка) и волны Майера (волны третьего порядка). Приводится характеристика циркадианных и ультрадианных сверхмедленных волн. Показаны роль симпатической нервной системы в происхождении регулярных волн АД и их связь с величиной барорецепторного рефлекса. Обращается внимание на роль изменений минутного объема кровообращения и периферического сопротивления кровотоку в происхождении флуктуаций АД. Приводятся литературные сведения о способах и особенностях регистрации АД, позволяющих выявить и проанализировать нерегулярные высокочастотные флуктуации АД, связь этих флуктуаций с величиной барорецепторного рефлекса и активностью симпатической нервной системы. Представлены данные об амплитуде высокочастотных нерегулярных колебаний АД у животных с моделированной артериальной гипертензией. В обзоре обращается внимание на возможность регистрации регулярных колебаний АД при его постоянной неинвазивной регистрации.

Об авторах

В. А. Цырлин
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В.А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Цырлин Виталий Александрович — доктор медицинских наук, профессор, главный научный сотрудник отдела экспериментальной физиологии и фармакологии Центра доклинических и трансляционных исследований

Санкт-Петербург



Н. В. Кузьменко
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В.А. Алмазова» Министерства здравоохранения Российской Федерации; Государственное бюджетное образовательное учреждение высшего профессионального образования «Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова» Министерства здравоохранения Российской Федерации
Россия

Кузьменко Наталия Владимировна — кандидат биологических наук, старший научный сотрудник отдела экспериментальной физиологии и фармакологии Центра доклинических и трансляционных исследований; старший научный сотрудник лаборатории биофизики кровообращения Научно-образовательного института биомедицины

пр. Пархоменко, д. 15, Санкт-Петербург, 194156



М. Г. Плисс
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В.А. Алмазова» Министерства здравоохранения Российской Федерации; Государственное бюджетное образовательное учреждение высшего профессионального образования «Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова» Министерства здравоохранения Российской Федерации
Россия

Плисс Михаил Геннадиевич — кандидат медицинских наук, заведующий отделом экспериментальной физиологии и фармакологии Центра доклинических и трансляционных исследований; заведующий лабораторией биофизики кровообращения Научно-образовательного института биомедицины

Санкт-Петербург



Список литературы

1. London GM, Guérin A. Influence of arterial pulse and reflective waves on systolic blood pressure and cardiac function. J Hypertens Suppl. 1999;17(2):S 3–S6.

2. Хаютин В. М., Лукошкова Е. В., Рогоза А. Н., Никольский В. П. Отрицательная обратная связь в патогенезе первичной артериальной гипертензии: механическая чувствительность эндотелия. Российский физиологический журнал. 1993;79(8):1–21. [Khaiutin VM, Lukoshkova EV, Rogoza AN, Nikolskiy VP. Negative feedbacks in the pathogenesis of primary arterial hypertension: the mechanical sensitivity of the endothelium. Russ Physiol J. 1993;79(8):1–21. In Russian].

3. Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014;15(12):802–812. doi:10.1038/nrm3896

4. de la Sierra A, Pareja J, Yun S, Acosta E, Aiello F, Oliveras A et al. Central blood pressure varibility is increased in hypertensive patients with target organ damage. J Clin Hypertens (Greenwich). 2018;20(2):266–272. doi:10.1111/jch.13172

5. Imsirovic J, Bartolák-Suki E, Jawde SB, Parameswaran H, Suki B. Blood pressure-induced physiological strain variability modulates wall structure and function in aorta rings. Physiol Meas. 2018;39(10):105014. doi:10.1088/1361-6579/aae65f

6. Leloup AJ, Van Hove CE, Kurdi A, De Moudt S, Martinet W, De Meyer GR et al. A novel set-up for the ex vivo analysis of mechanical properties of mouse aortic segments stretched at physiological pressure and frequency. J Physiol. 2016;594(21):6105–6115. doi:10.1113/JP272623

7. Yacob G, Yuichiro Y, Mercedes C, Philip G. Association between long-term blood pressure variability and 10-year progression in arterial stiffness: the multiethnic study of atherosclerosis. Hypertension. 2017;69(1):118–127.

8. Hisamatsu T, Katsuyuki M, Takayoshi O, Hisatomi A, Fujiyoshi A, Atsushi S et al. Home blood pressure variability and subclinical atherosclerosis in multiple vascular beds: A populationbased study. J Hypertens. 2018;36(11):2193–2203.

9. Котельников С.А., Ноздрачев А. Д., Одинак М. М., Шустов Е. Б., Коваленко И. Ю., Давыденко В.Ю. Вариабельность ритма сердца: представления о механизмах. Физиология человека. 2002;8(1):130–143. [Kotelnikov SA, Nozdrachev AD, Odinak MM, Shustov EB, Kovalenko IYu, Davydenko VYu. Heart rate variability: understanding of mechanisms. Hum Physiol. 2002;8(1):130–143. In Russian].

10. Cooke WH, Hoag JB, Crossman AA, Kuusela TA, Tahvanainen KU, Eckberg DL. Human responses to upright tilt: a window on central autonomic integration. J Physiol. 1999;517:617–628.

11. Mayer S. Studien zur physiologie des herzens und der blutgefasse. Sitz Kaiser Akad Wiss. 1876;74:281–307.

12. Janssen BJ, Leenders PJ, Smits JF. Short-term and long-term blood pressure and heart rate variability in the mouse. Am J Physiol Regul Integr Comp Physiol. 2000;278(1):R215–225.

13. Brown DR, Brown LV, Patwardhan A, Randall DC. Sympathetic activity and blood pressure are tightly coupled at 0,4 Hz in conscious rats. Am J Physiol. 1994;267:R1378–R1384.

14. Julien C, Zhang ZQ, Barrès C. How sympathetic tone maintains or alters arterial pressure. Fundam Clin Pharmacol. 1995;9(4):343–349.

15. Julien С. The enigma of Mayer waves: facts and models. Cardiovasc Res. 2006;70(1):12–21.

16. Elghozi JL, Japundzic N, Grichois ML, Zitoun P. Nervous mechanisms of spontaneous oscillations of systolic blood pressure and heart rate. Arch Mal Coeur Vaiss. 1990;83(8):1065–1068.

17. Persson PB, Stauss H, Chung O, Wittmann U, Unger T. Spectrum analysis of sympathetic nerve activity and blood pressure in conscious rats. Am J Physiol. 1992;263(5 Pt 2):H1348–H1355.

18. Daffonchio A, Franzelli C, Radaelli A, Castiglioni P, Di Rienzo M, Mancia G et al. Sympathectomy and cardiovascular spectral components in conscious normotensive rats. Hypertension. 1995;25(6):1287–1293.

19. Burgess DE, Randall DC, Speakman RO, Brown DR. Coupling of sympathetic nerve traffic and BP at very low frequencies is mediated by large-amplitude events. Am J Physiol Regul Integr Comp Physiol. 2003;284(3):R802–R 810.

20. Blinowska K, Marsh DJ. Ultra- and circadian fluctuations in arterial pressure and electromyogram in conscious dogs. Am J Physiol. 1985;249(6 Pt 2):R 720–725. doi:10.1152/ ajpregu.1985.249.6.R720

21. Kita Y, Ishise J, Yoshita Y, Aizawa Y, Yoshio H, Minagawa F et al. Power spectral analysis of heart rate and arterial blood pressure oscillation in brain-dead patients. J Auton Nerv Syst. 1993;44(2):101–107.

22. Machnig Th, Schöbel S, Engels G, Gellert J, Bachmann K. Analysis of circadian blood pressure profiles using Fourier analysis. Z Kardiol. 1992;81(Suppl 2):45–49.

23. Gijón-Conde T, Graciani A, López-García E, GuallarCastillon P, Garcia-Esquinas E, Rodriguez-Artalejo F et al. Short-term variability and nocturnal decline in ambulatory blood pressure in normotension, white-coat hypertension, masked hypertension and sustained hypertension: a population-based study of older individuals in Spain. Hypertens Res. 2017;40(6):613–619. doi:10.1038/hr.2017.9

24. Kang IS, Pyun WB, Shin J, Ihm SH, Ju HK, Park S et al. Higher blood pressure variability in white coat hypertension; from the Korean ambulatory blood pressure monitoring registry. Korean Circ J. 2016;46(3):365–373. doi: 10.4070/kcj.2016.46.3.365

25. Sei H, Furuno N, Morita Y. Diurnal changes of blood pressure, heart rate and body temperature during sleep in the rat. J Sleep Res. 1997;6(2):113–119.

26. Gubin DG, Weinert D, Rybina SV, Danilova LA, Solovieva SV, Durov AN et al. Activity, sleep and ambient light have a different impact on circadian blood pressure, heart rate and body temperature rhythms. Chronobiol Int. 2017;34(5):632–649. doi:10.1080/07420528.2017.1288632

27. Губин Д. Г., Вайнерт Д., Соловьева С. В., Дуров А. М. Роль активности, сна и внешней освещенности в суточной динамике артериального давления. Медицинский алфавит. 2018;1(3):20–23. [Gubin DG, Vainert D, Solovieva SV, Durov AM. The role of activity, sleep and external light in the daily dynamics of blood pressure. Med Alphabet. 2018;1(3):20–23. In Russian].

28. Ferrari AU, Daffonchio A, Gerosa S, Franzelli C, Paleari P, Ventura C et al. Spontaneous variability of regional haemodynamics in unanaesthetized rats. J Hypertens. 1993;11(5):535–541.

29. Julien C, Zhang ZQ, Barrès C. How sympathetic tone maintains or alters arterial pressure. Fundam Clin Pharmacol. 1995;9(4):343–349.

30. Chiang FT, Tseng CD, Hsu KL, Lo HM, Tseng YZ, Hsieh PS et al. Circadian variations of atrial natriuretic peptide in normal people and its relationship to arterial blood pressure, plasma renin activity and aldosterone level. Int J Cardiol. 1994;46(3):229–233.

31. Hummler E, Rossier BC. Physiological and pathophysiological role of the epithelial sodium channel in the control of blood pressure. Kidney Blood Press Res. 1996;19(3–4):160–165.

32. O’Leary DS, Woodbury DJ. Role of cardiac output in mediating arterial blood pressure oscillations. Am J Physiol. 1996;271(3 Pt 2):R 641–646.

33. Oosting J, Struijker-Boudier HA, Janssen BJ. Circadian and ultradian control of cardiac output in spontaneous hypertension in rats. Am J Physiol. 1997;273(1 Pt 2):H66–H75.

34. Yoneda Y, Takeda K, Nakamura K, Fujita H, Uchida A, Yoshitomi T et al. Role of baroreflex and central alpha2-adrenergic receptor systems in the diurnal variation of blood pressure and heart rate in normotensive and hypertensive rats. Clin Exp Pharmacol Physiol Suppl. 1995;22(1):S64–S66.

35. Bode-Böger SM, Böger RH, Kielstein JT, Löffler M, Schäffer J, Frölich JC. Role of endogenous nitric oxide in circadian blood pressure regulation in healthy humans and in patients with hypertension or atherosclerosis. J Investig Med. 2000;48(2): 125–132.

36. Hermida RC, Ayala DE, Fernández JR, Mojón A, Alonso I, Calvo C. Modeling the circadian variability of ambulatorily monitored blood pressure by multiple-component analysis. Chronobiol Int. 2002;19(2):461–481.

37. Parati G. Blood pressure variability: its measurement and significance in hypertension. J Hypertens Suppl. 2005;23(1):S19– S25. doi:10.1097/01.hjh.0000165624.79933.d3

38. Chadachan VM, Ye MT, Tay JC, Subramaniam K, Setia S. Understanding short-term blood-pressure-variability phenotypes: from concept to clinical practice. Int J Gen Med. 2018;11:241–254. doi:10.2147/IJGM.S164903

39. Boggia J, Asayama K, Li Y, Hansen TW, Mena L, Schutte R. Cardiovascular risk stratification and blood pressure variability on ambulatory and home blood pressure measurement. Curr Hypertens Rep. 2014;16(9):470. doi:10.1007/s11906-014-0470-8

40. Parati G, Castiglioni P, Di Rienzo M, Omboni S, Pedotti A, Mancia G. Sequential spectral analysis of 24-hour blood pressure and pulse interval in humans. Hypertension. 1990;16(4):414–421.

41. Juhanoja EP, Niiranen TJ, Johansson JK, Puukka PJ, Thijs L, Asayama K et al. Outcome driven thresholds for increased home blood pressure variability. Hypertension. 2017;69(4):599–607.

42. Gubin D, Cornélissen G, Halberg F, Gubin G, Uezono K, Kawasaki T. The human blood pressure chronome: a biological gauge of aging. In Vivo. 1997;11(6):485–494.

43. Агаджанян Н. А., Губин Д. Г. Десинхроноз: механизмы развития от молекулярно-генетического до организменного уровня. Успехи физиологических наук. 2004;35(2):57–72 [Agajanyan NA, Gubin DG. Desynchr5onosis: mechanisms of development from the molecular-genetic to the organismal level. Advances Physiol. 2004;35(2):57–72. In Russian].

44. Cornelissen Guillaume G, Gubin D, Beaty LA, Otsuka K. Some near- and far-environmental effects on human health and disease with a focus on the cardiovascular system. Int J Environ Res. Public Health. 2020;17(9):3083. doi:10.3390/ijerph17093083

45. Гавриков К.Е. Автоматическая установка для регистрации и анализа артериального давления и периода сердечных сокращений у бодрствующих животных. Физиологический журнал СССР. 1991;77(12):102–105. [Gavrikov KE. Automatic installation for recording and analyzing blood pressure and heart rate in awake animals. Physiol Journal USSR. 1991;77(12):102– 105. In Russian].

46. Гавриков К.Е., Галустьян Г.Э., Цырлин В. А. Зависимость между барорецепторным рефлексом и вариабельностью артериального давления и периода сокращений сердца у крыс при артериальной гипертензии. Бюллетень экспериментальной биологии и медицины. 1995;119(5):474–476. [Gavrikov KE, Galustyan GE, Tsyrlin VA. The relationship between the baroreceptor reflex and the variability of blood pressure and the period of heart contractions in rats with arterial hypertension. Bull Exp Boil Med. 1995;119(5):474–476. In Russian].

47. Галустьян Г.Э., Гавриков К. Е. Характеристики вариабeльности артериального давления у человека и животных. Успехи физиологических наук. 1999;30(4):67–80. [Galustyan GE, Gavrikov KE. Characteristics of blood pressure variability in humans and animals. Success Physiol Sci. 1999;30(4):67–80. In Russian].

48. Omboni S, Parati G, Castiglioni P, Di Rienzo M, Imholz BP, Langewouters GJ et al. Estimation of blood pressure variability from 24-hour ambulatory finger blood pressure. Hypertension. 1998;32(1):52–55. Hypertension. 1998;32(1):52–8.

49. Omboni S, Parati G, Frattola A, Mutti E, Di Rienzo M, Castiglioni P et al. Spectral and sequence analysis of finger blood pressure variability. Comparison with analysis of intra-arterial recordings. Hypertension. 1993;22(1):26–33.

50. Veerman DP, Imholz BP, Wieling W, Karemaker JM, van Montfrans GA. Effects of aging on blood pressure variability in resting conditions. Hypertension. 1994;24(1):120–130.


Дополнительные файлы

Для цитирования:


Цырлин В.А., Кузьменко Н.В., Плисс М.Г. Вариабельность артериального давления — регулярные и нерегулярные волны. Артериальная гипертензия. 2020;26(6):612-619. https://doi.org/10.18705/1607-419X-2020-26-6-612-619

For citation:


Tsyrlin V.A., Kuzmenko N.V., Pliss M.G. Blood pressure variability — regular and irregular waves. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2020;26(6):612-619. (In Russ.) https://doi.org/10.18705/1607-419X-2020-26-6-612-619

Просмотров: 358


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)