Preview

Артериальная гипертензия

Расширенный поиск

Современные представления о генетике артериальной гипертензии – мозаичная теория, гены-кандидаты, моногенные формы и широкогеномные исследования

https://doi.org/10.18705/1607-419X-2020-26-5-490-500

Аннотация

В обзоре представлены литературные данные об известных моногенных заболеваниях, сопровождающихся повышением артериального давления (АД), данные о наследовании артериальной гипертензии (АГ) и генах-кандидатах, а также обзор результатов широкогеномных исследований в области АГ. Современное представление о роли генетики в становлении и прогрессировании АГ существенно зависит от совершенствования методов изучения генетических ассоциаций. Высокая производительность новых методов позволила накопить знания о маркерах, ассоциированных с АГ. В настоящее время основная задача исследователей — определить сложные молекулярно-биологические пути регуляции уровня АД, что позволит от популяционного уровня ассоциаций перейти к индивидуальному уровню понимания патогенеза и подходов к лечению.

Об авторе

А. О. Конради
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации; Университет ИТМО
Россия

Конради Александра Олеговна — доктор медицинских наук, профессор, руководитель НИО АГ, заместитель генерального директора по научной работе ФГБУ «НМИЦ им. В. А. Алмазова» Минздрава России, руководитель Института трансляционной медицины Университета ИТМО

ул. Аккуратова, д. 2, Санкт-Петербург, 197341
Тел.: 8(812)702–37–33 



Список литературы

1. Frohlich ED, Dustan HP, Bumpus FM. Irvine H. Page: 19011991. The celebration of a leader. Hypertension. 1991;18(4):443–445.

2. Padmanabhan S, Aman A, Dominiczak AF. Recent findings in the genetics of blood pressure: how to apply in practice or is a moonshot required? Curr Hypertens Rep. 2018;20(6):54.

3. Padmanabhan S, Aman A, Dominiczak AF. Genomics of hypertension. Pharmacol Res. 2017;121:219–229.

4. Lander ES. The new genomics: global views of biology. Science. 1996;274(5287):536–539.

5. Ji W, Foo JN, O’Roak BJ, Zhao H, Larson MG, Simon DB et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet. 2008;40(5): 592–599.

6. Spence JD, Rayner BL. Hypertension in blacks: individualized therapy based on renin/aldosterone phenotyping. Hypertension. 2018;72(2):263–269.

7. Padmanabhan S, Joe B. Toward precision medicine for hypertension: a review of genomic, epigenomic, and microbiomic effects on blood pressure in experimental rat models and humans. Physiol Rev. 2017;97(4):1469–1528.

8. Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992;355(6357):262–265.

9. Williams B, MacDonald TM, Morant S, Webb DJ, Sever P, McInnes G et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet. 2015;386(10008):2059–2068.

10. Funder JW. Primary aldosteronism. Hypertension. 2019;74(3):458–466.

11. Jeunemaitre X, Soubrier F, Kotelevtsev YV, Lifton RP, Williams CS, Charru A et al. Molecular basis of human hypertension: role of angiotensinogen. Cell. 1992;71(1):169–180.

12. O’Donnell CJ, Lindpaintner K, Larson MG, Rao VS, Ordovas JM, Schaefer EJ et al. Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham Heart Study. Circulation. 1998;97(18):1766–1772.

13. Pickering GW. The genetic factor in essential hypertension. Ann Intern Med. 1955;43(3):457–464.

14. Mongeau JG, Biron P, Sing CF. The influence of genetics and householdenvironment upon the variability of normal blood pressure: the Montreal Adoption Survey. Clin Exp Hypertens A. 1986;8(4–5):653–660.

15. Harrap SB, Stebbing M, Hopper JL, Hoang HN, Giles GG. Familial patterns of covariation for cardiovascular risk factors in adults: the Victorian Family Heart Study. Am J Epidemiol. 2000;152(8):704–715.

16. Kotchen TA, Kotchen JM, Grim CE, George V, Kaldunski ML, Cowley AW et al. Genetic determinants of hypertension: identification of candidate phenotypes, Hypertension. 2000;36(1):7–13.

17. Bloem LJ, Manatunga AK, Tewksbury DA, Pratt JH. The serum angiotensinogen concentration and variants of the angiotensinogen gene in white and black children. J Clin Invest. 1995;95(3):948–953.

18. Bonnardeaux A, Davies E, Jeunemaitre X, Fery I, Charru A, Clauser E. Angiotensin II type 1 receptor gene polymorphism in human essential hypertension. Hypertension. 1994;24(1):63–69.

19. Jiang Z, Zhao W, Yu F, Xu G. Association of angiotensin II type 1 receptor gene polymorphism with essential hypertension. Chin Med J (Engl). 2001;114(12):1249–1251.

20. Tamaki S, Nakamura Y, Tsujita Y, Nozaki A, Amamoto K, Kadowaki T et al. Polymorphism of the angiotensin converting enzyme gene and blood pressure in a Japanese general population (the Shigaraki Study). Hypertens Res. 2002;25(6):843–848.

21. Lupton SJ, Chiu CL, Lind JM. A hypertension gene: Are we there yet? Twin Res Hum Genet. 2011;14(4):295–304.

22. Graham LA, Padmanabhan S, Fraser NJ, Kumar S, Bates JM, Raffi HS et al. Validation of uromodulin as a candidate gene for human essential hypertension. Hypertension. 2014;63(3):551–558.

23. Ji W, Foo JN, O’Roak BJ, Zhao H, Larson MG, Simon DB et al. Rare independent mutations in renal salt handling genes contribute to bloodpressure variation. Nat Genet. 2008;40(5): 592–599.

24. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–678.

25. Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018;50(10):1412–1425.

26. International consortium for blood pressure genome-wide association studies, Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103–109.

27. Caulfield M, Munroe P, Pembroke J, Samani N, Dominiczak A, Brown M et al. Genome-wide mapping ofhuman loci foressential hypertension. Lancet. 2003;361(9375):2118–2123.

28. Levy D, Ehret G, Rice K, Verwoert GC, Launer LJ, Dehghan A et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41(6):677–687.

29. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41(6):666–676.

30. International Consortium for Blood Pressure Genome-Wide Association Studies, Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103–109.

31. Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B et al. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet. 2017;49(3):403–415.

32. Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet. 2019;51(4):584–591.

33. Padmanabhan S, Melander O, Johnson T, Di Blasio AM, Lee WK, Gentilini D et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet. 2010;6(10): e1001177.

34. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41(6):666–676.

35. Newton-Cheh C, Larson MG, Vasan RS, Levy D, Bloch KD, Surti A et al. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat Genet. 2009;41(3):348–353.

36. Arora P, Wu C, Khan AM, Bloch DB, Davis-Dusenbery BN, Ghorbani A et al. Atrial natriuretic peptide is negatively regulated by microRNA-425. J Clin Invest. 2013;123(8):3378–3382.

37. Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in East Asians. Nat Genet. 2011;43(6):531–538.

38. Matsukawa N, Grzesik WJ, Takahashi N, Pandey KN, Pang S, Yamauchi M et al. The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc Natl Acad Sci USA. 1999;96(13):7403–7408.

39. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41(6):677–687.

40. Baker DA, Kelly JM. Structure function and evolution of microbal adenylyl and guanylyl cyclases. Mol Microbol. 2004;52(5):1229–1242.

41. Yamagami S, Suzuki N. Diverse from of guanylyl cyclases in medika fish their genomic structure and phylogenetic relationships to those in vertebrates and invertebrates. Zoolog Sci. 2005;22(8):819–835.

42. Ignarro LJ, Harbison RG, Wood KS, Kadowitz PJ. Activation of purified soluble guanylat cyclase by endotheliumderived relaxing factor from intrapulmonary artery and vein: stimulation by acetylcholine, bradykinin and arachidonic acid. J Pharmacol Exp Ther. 1986;237(3):893.

43. Friebe A, Mergia E, Dangel O, Lange A, Koesling D. Fatal gastrointestinal obstruction and hypertension in mice lacking nitric oxide-sensitive guanylyl cyclase. PNAS. 2007;104(18):7699–7704.

44. Ishii M, Hattori A, Numaguchi Y, Ma X, Nagasaka T, Tsujimoto M et al. The effect of recombinant aminopeptidase A (APA) on hypertension in pregnant spontaneously hypertensive rats (SHRs). Early Hum Dev. 2009;85(9):589–594.

45. Конради А. О. Эпигенетические механизмы в становлении и прогрессировании артериальной гипертензии и ее осложнений. Артериальная гипертензия. 2015;21(6):559–566. https://doi.org/10.18705/1607-419X-2015-21-6-559-566.

46. Wang X, Prins BP, Sober S, Laan M, Snieder H. Beyond genome-wide association studies: new strategies for identifying genetic determinants of hypertension. Curr Hypertens Rep. 2011;13(6):442–451.

47. Friso S, Carvajal CA, Fardella CE, Olivieri O. Epigenetics and arterial hypertension: the challenge of emerging evidence. Transl Res. 2015;165(1):154–165.

48. Liang M, Cowley AW, Mattson DL, Kotchen TA, Liu Y. Epigenomics of hypertension. Semin Nephrol. 2013;33(4):392–399.

49. Cowley AW, Nadeau JH, Baccarelli A, Berecek K, Fornage M, Gibbons GH et al. Report of the National Heart, Lung, and Blood Institute working group on epigenetics and hypertension. Hypertension. 2012;59(5):899–905.


Рецензия

Для цитирования:


Конради А.О. Современные представления о генетике артериальной гипертензии – мозаичная теория, гены-кандидаты, моногенные формы и широкогеномные исследования. Артериальная гипертензия. 2020;26(5):490-500. https://doi.org/10.18705/1607-419X-2020-26-5-490-500

For citation:


Konradi A.O. Current knowledge in hypertension genetics: mosaic theory, candidate genes and genome-wide association studies. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2020;26(5):490-500. (In Russ.) https://doi.org/10.18705/1607-419X-2020-26-5-490-500

Просмотров: 2406


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)