Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

Statins: unexpected help in COVID-19

https://doi.org/10.18705/1607-419X-2020-26-5-509-517

Abstract

The COVID-19 pandemic has had a huge impact on the health of millions of people around the world on an unprecedented scale. Unfortunately, the process of creating effective antiviral drugs and vaccines is being delayed. Therefore, drugs that are already available and may have an effect on COVID-19 are being investigated. Due to the fact that viral infection often affects the cardiovascular system, causing myocardial infarction, viral myocarditis, tachyarrhythmias and stress cardiomyopathies, a theory was put forward that HMG-CoA reductase (3-hydroxy-3methyl-glutaryl-CoA reductase) inhibitors (statins) can reduce the risk of cardiovascular complications in these patients. In recent years, this class of drugs has been proposed, including for viral infections, such as the influenza virus or MERS-CoV. The review discusses both the latest clinical data on the efficacy of statins in COVID-19 and the pleotropic mechanisms of statins that can limit the pathogenic effect of viruses. In particular, statins can act on lipid cell rafts (subdomains of the plasma membrane), decreasing their lipid concentration; limiting the interaction of the virus with the receptors of angiotensin-converting enzyme-2 and CD-147. Statins have an antiinflammatory effect (blocking the molecular mechanisms of inflammation, including NF-κB and NLRP3), limit the development of a “cytokine storm” in severe patients with COVID-19; can inhibit SARS-CoV-2 basic protease; influence coagulation, limit sympathetic activity and have other effects. In two large cohort observational studies (n = 96032 and n = 13981), hospitalized patients with COVID-19 who were taking statins showed a decrease in hospital mortality and mortality 28 days after the admission to the hospital. Thus, statins can play a role in the treatment of COVID-19.

About the Authors

D. F. Gareeva
Bashkir State Medical University
Russian Federation

Diana F. Gareeva, MD, PhD, Assistant, Department of Propaedeutics of Internal Diseases, Cardiologist

3 Lenin street, Ufa, 450008



T. I. Musin
Bashkir State Medical University
Russian Federation

Timur I. Musin, MD, Cardiologist, PhD Student, Department of Internal Diseases Propedaeutics

Ufa



V. N. Pavlov
Bashkir State Medical University
Russian Federation

Valentin N. Pavlov, MD, PhD, DSc, Professor, Head, Urology Department

Ufa



P. A. Davtyan
Bashkir State Medical University
Russian Federation

Paruyr A. Davtyan, MD, Resident, Department of Internal Diseases Propedaeutics

Ufa



V. Sh. Ishmetov
Bashkir State Medical University
Russian Federation

Vladimir Sh. Ishmetov, MD, PhD, DSc, Head, Department of Cardiovascular and X-ray Surgery, Clinic

Ufa



M. R. Plotnikova
Bashkir State Medical University
Russian Federation

Marina R. Plotnikova, MD, PhD, Head, Cardiology Department

Ufa



A. V. Pavlov
Bashkir State Medical University
Russian Federation

Aleksey V. Pavlov, MD, PhD, Head, Department of Cardiac Surgery

Ufa



Benzhi Cai
Harbin Medical University
China

Benzhi Cai, Professor, Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics, China Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy

Harbin



P. Stricker
Pelé Pequeno Príncipe Research Institute and Pequeno Príncipe Faculty
Brazil

P. Stricker, MSc, PhD Student, Cell Therapy and Biotechnology in Regenerative Medicine Department

Curitiba



K. Carvalho
Pelé Pequeno Príncipe Research Institute and Pequeno Príncipe Faculty
Brazil

K. Carvalho, MD, MsC, PhD, Professor, Cell Therapy and Biotechnology in Regenerative Medicine Department

Curitiba



N. Sh. Zagidullin
Bashkir State Medical University
Russian Federation

Naufal Sh. Zagidullin, MD, PhD, DSc, Professor, Director, Research Institute of Cardiology, Head, Department of Propaedeutics of Internal Diseases

Ufa



References

1. Dolinski D, Dolinska B, Zmaczynska-Witek B, Banach M, Kulesza W. Unrealistic optimism in the time of coronavirus pandemic: may it help to kill, if so-whom: disease or the person? J Clin Med. 2020;9(5):1464. doi:10.3390/jcm9051464

2. Radenkovic D, Chawla S, Pirro M, Sahebkar A, Banach M. Cholesterol in relation to COVID-19: should we care about it? J Clin Med. 2020;9(6):1909. doi:10.3390/jcm9061909

3. Liao JK, Laufs U. Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol. 2005;45:89–118. doi:10.1146/annurev.pharmtox.45.120403.095748

4. Rodrigues Diez R, Rodrigues-Diez R, Lavoz C, RayegoMateos S, Civantos E, Rodriguez-Vita J et al. Statins inhibit angiotensin II/Smad pathway and related vascular fibrosis, by a TGF-β-independent process. PLoS One. 2010;5(11):e14145. doi:10.1371/journal.pone.0014145

5. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):1–8. doi:10.1001/jamacardio.2020.1017

6. Katsiki N, Banach M, Mikhailidis DP. Lipid-lowering therapy and renin-angiotensin-aldosterone system inhibitors in the era of the COVID-19 pandemic. Arch Med Sci. 2020;16(3):485–489. doi:10.5114/aoms.2020.94503

7. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [published correction appears in Lancet. 2020]. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140–6736(20)30183–5

8. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China [published online ahead of print, 2020]. JAMA Cardiol. 2020;5(7):802–810. doi:10.1001/jamacardio.2020.0950

9. Yang X, Yu Y, Xu J, Shu H, an Xia J, Liu H et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study [published correction appears in Lancet Respir Med. 2020;8(4): e26]. Lancet Respir Med. 2020;8(5):475–481. doi:10.1016/S2213-2600(20)30079-5

10. Zagidullin NS, Gareeva DF, Ishmetov VS, Pavlov AV, Plotnikova MR, Pushkareva AE et al. Renin-angiotensin-aldosterone system in new coronavirus infection 2019. Arterial’naya Gipertenziya = Arterial Hypertension. 2020;26(3):240–247. doi:10.18705/1607419X-2020-26-3-240-247. In Russian.

11. Bonow RO, Fonarow GC, O’Gara PT, Yancy CW. Association of coronavirus disease 2019 (COVID - 19) with myocardial injury and mortality [published online ahead of print, 2020]. JAMA Cardiol. 2020. doi:10.1001/jamacardio.2020.1105

12. Castiglione V, Chiriacò M, Emdin M, Taddei S, Vergaro G. Statin therapy in COVID-19 infection. Eur Heart J Cardiovasc Pharmacother. 2020;6(4):258–259. doi:10.1093/ehjcvp/pvaa042

13. Pirro M, Simental-Mendía LE, Bianconi V, Watts GF, Banach M, Sahebkar A. Effect of statin therapy on arterial wall inflammation based on 18F-FDG PET/CT: a systematic review and veta-analysis of interventional studies. J Clin Med. 2019;8(1):118. Published 2019. doi:10.3390/jcm8010118

14. Bahrami A, Parsamanesh N, Atkin SL, Banach M, Sahebkar A. Effect of statins on toll-like receptors: a new insight to pleiotropic effects. Pharmacol Res. 2018;135:230–238. doi:10.1016/j.phrs.2018.08.014

15. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359(21):2195–2207. doi:10.1056/NEJMoa0807646

16. Novack V, MacFadyen J, Malhotra A, Almog Y, Glynn RJ, Ridker PM. The effect of rosuvastatin on incident pneumonia: results from the JUPITER trial. CMAJ. 2012;184(7):E 367–E 372. doi:10.1503/cmaj.111017

17. Fedson DS. Pandemic influenza: a potential role for statins in treatment and prophylaxis. Clin Infect Dis. 2006;43(2):199–205. doi:10.1086/505116

18. Phadke M, Saunik S. COVID-19 treatment by repurposing drugs until the vaccine is in sight [published online ahead of print, 2020]. Drug Dev Res. 2020;81(5):541–543. doi:10.1002/ddr.21666

19. Henry C, Zaizafoun M, Stock E, Ghamande S, Arroliga AC, White HD. Impact of angiotensin-converting enzyme inhibitors and statins on viral pneumonia. Proc (Bayl Univ Med Cent). 2018;31(4):419–423. doi:10.1080/08998280.2018.1499293

20. Chopra V, Rogers MA, Buist M, Govindan S, Lindenauer PK, Saint S et al. Is statin use associated with reduced mortality after pneumonia? A systematic review and meta-analysis. Am J Med. 2012;125(11):1111–1123. doi:10.1016/j.amjmed.2012.04.011

21. Makris D, Manoulakas E, Komnos A, Papakrivou E, Tzovaras N, Hovas A, Zintzaras E et al. Effect of pravastatin on the frequency of ventilator-associated pneumonia and on intensive care unit mortality: open-label, randomized study. Crit Care Med. 2011;39(11):2440–2446. doi:10.1097/CCM.0b013e318225742c

22. Mehrbod P, Omar AR, Hair-Bejo M, Haghani A, Ideris A. Mechanisms of action and efficacy of statins against influenza. Biomed Res Int. 2014;2014:872370. doi:10.1155/2014/872370

23. Baglivo M, Baronio M, Natalini G, Beccari T, Chiurazzi P, Fulcheri E et al. Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: a possible strategy for reducing SARS-COV-2 infectivity? Acta Biomed. 2020;91(1):161–164. doi:10.23750/abm.v91i1.9402

24. Choi KS, Aizaki H, Lai MM. Murine coronavirus requires lipid rafts for virus entry and cell-cell fusion but not for virus release. J Virol. 2005;79(15):9862–9871. doi:10.1128/JVI.79.15.98629871.2005

25. Heaton NS, Randall G. Multifaceted roles for lipids in viral infection. Trends Microbiol. 2011;19(7):368–375. doi:10.1016/j.tim.2011.03.007

26. Jeon JH, Lee C. Cholesterol is important for the entry process of porcine deltacoronavirus. Arch Virol. 2018;163(11):31193124. doi:10.1007/s00705-018-3967-7

27. Lu Y, Liu DX, Tam JP. Lipid rafts are involved in SARSCoV entry into Vero E 6 cells. Biochem Biophys Res Commun. 2008;369(2):344–349. doi:10.1016/j.bbrc.2008.02.023

28. Hu X, Chen D, Wu L, He G, Ye W. Low serum cholesterol level among patients with COVID-19 infection in Wenzhou, China. [Published online ahead of print 21 February 2020]. doi:10.2139/ssrn.3544826.

29. Li GM, Li YG, Yamate M, Li SM, Ikuta K. Lipid rafts play an important role in the early stage of severe acute respiratory syndrome-coronavirus life cycle. Microbes Infect. 2007;9(1):96–102. doi:10.1016/j.micinf.2006.10.015

30. Jury EC, Isenberg DA, Mauri C, Ehrenstein MR. Atorvastatin restores Lck expression and lipid raft-associated signaling in T cells from patients with systemic lupus erythematosus. J Immunol. 2006;177(10):7416–7422. doi:10.4049/jimmunol.177.10.7416

31. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B et al. A crucial role of angiotensin converting enzyme 2 (ACE 2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875–879. doi:10.1038/nm1267

32. Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417(6891):822–828. doi:10.1038/nature00786

33. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112–116. doi:10.1038/nature03712

34. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE 2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586–590. doi:10.1007/s00134020-05985-9

35. South AM, Diz DI, Chappell MC. COVID-19, ACE 2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol. 2020;318(5): H1084–H1090. doi:10.1152/ajpheart.00217.2020

36. Wang K, Chen W, Zhou Y, Lian J, Zhang Z, Du P et al. SARS-CoV-2 invades host cells via a novel route: CD 147-spike protein. bioRxiv. 2020.03.14.988345. [Published online ahead of print 14 March 2020]. doi:10.1101/2020.03.14.988345

37. Liang X, Yang LX, Guo R, Shi Y, Hou X, Yang Z et al. Atorvastatin attenuates plaque vulnerability by downregulation of EMMPRIN expression via COX-2/PGE 2 pathway. Exp Ther Med. 2017;13(3):835–844. doi:10.3892/etm.2017.4062

38. Albert MA, Danielson E, Rifai N, Ridker PM; PRINCE Investigators. Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study. J Am Med Assoc. 2001;286(1):64–70. doi:10.1001/jama.286.1.64

39. Ortego M, Gómez-Hernández A, Vidal C, SánchezGalán E, Blanco-Colio LM, Martín-Ventura JL et al. HMG-CoA reductase inhibitors reduce I kappa B kinase activity induced by oxidative stress in monocytes and vascular smooth muscle cells. J Cardiovasc Pharmacol. 2005;45(5):468–475. doi:10.1097/01.fjc.0000159042.50488.e5

40. Parsamanesh N, Moossavi M, Bahrami A, Fereidouni M, Barreto G, Sahebkar A. NLRP3 inflammasome as a treatment target in atherosclerosis: a focus on statin therapy. Int Immunopharmacol. 2019;73:146–155. doi:10.1016/j.intimp.2019.05.006

41. Altaf A, Qu P, Zhao Y, Wang H, Lou D, Niu N. NLRP3 inflammasome in peripheral blood monocytes of acute coronary syndrome patients and its relationship with statins. Coron Artery Dis. 2015;26(5):409–421. doi:10.1097/MCA.0000000000000255

42. Antoniak S, Mackman N. Multiple roles of the coagulation protease cascade during virus infection. Blood. 2014;123(17):26052613. doi:10.1182/blood-2013-09-526277

43. Hwang DM, Chamberlain DW, Poutanen SM, Low DE, Asa SL, Butany J. Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod Pathol. 2005;18(1):1–10. doi:10.1038/modpathol.3800247

44. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23):2033–2040. doi:10.1182/blood.2020006000

45. Panes O, González C, Hidalgo P, Valderas JP, Acevedo M, Contreras S et al. Platelet tissue factor activity and membrane cholesterol are increased in hypercholesterolemia and normalized by rosuvastatin, but not by atorvastatin. Atherosclerosis. 2017;257: 164–171. doi:10.1016/j.atherosclerosis.2016.12.019

46. Mehra MR, Desai SS, Ruschitzka F, Patel AN. Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis [published online ahead of print, 2020] [retracted in: Lancet. 2020]. Lancet. 2020; S 0140–6736(20)31180–6. doi:10.1016/S01406736(20)31180-6

47. Zhang XJ, Qin JJ, Cheng X, Shen L, Zhao YC, Yuan Y et al. In-hospital use of statins is associated with a reduced risk of mortality among individuals with COVID-19 [published online ahead of print, 2020]. Cell Metab. 2020; S 1550–4131(20)30316–8. doi:10.1016/j.cmet.2020.06.015

48. Rodrigues-Diez RR, Tejera-Muñoz A, MarquezExposito L et al. Statins: Could an old friend help in the fight against COVID-19? [published online ahead of print, 2020]. Br J Pharmacol. 2020;10.1111/bph.15166. doi:10.1111/bph.15166

49. Zagidullin NS, Michels G, Zagidullin SZ. Statins and their antiarrhythmic activity. Cardiovasc Ther Prev. 2007;6(8):116–121. In Russian.

50. Reiner Ž, Hatamipour M, Banach M, Pirro M, Al-Rasadi K, Jamialahmadi T et al. Statins and the COVID-19 main protease: in silico evidence on direct interaction. Arch Med Sci. 2020;16(3):490–496. doi:10.5114/aoms.2020.94655


Review

For citations:


Gareeva D.F., Musin T.I., Pavlov V.N., Davtyan P.A., Ishmetov V.Sh., Plotnikova M.R., Pavlov A.V., Cai B., Stricker P., Carvalho K., Zagidullin N.Sh. Statins: unexpected help in COVID-19. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2020;26(5):509-517. https://doi.org/10.18705/1607-419X-2020-26-5-509-517

Views: 5701


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)