Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

Correlation between heart rate variability, blood pressure and heart function in patients with essential hypertension depending on the type of therapy

https://doi.org/10.18705/1607-419X-2020-26-5-581-589

Abstract

Objective. To assess the relationship between heart rate variability (HRV), blood pressure (BP) and heart function in patients with essential hypertension (EH) who are undergoing medical treatment (EH-1) and are simultaneously regularly involved in kinesitherapy (EH-2). Design and methods. In patients, blood pressure (BP) was measured and echocardiography was performed to determine the end-systolic and end-diastolic volume (ESV and EDV) of the left ventricle (LV), cardiac minute volume (CMV), stroke volume (SV) of the LV, left ventricular myocardial mass (LVM), LVM index (LVMI), post-systolic shortening (PSS), and ejection fraction (EF). To assess the characteristics of HRV, photoplethysmography (PPG) was applied. Information on the variability of the RR intervals was extracted from the pulse component of the PPG signal, and HRV indicators were calculated: HR — heart rate, LF — power in the Low Frequency range (sympathetic activity), HF — power in the High Frequency range (parasympathetic activity), LF/HF — general sympatho-vagal balance, CVI — cardiac vagal index, CSI — cardiac sympathetic index. Results. EH-1 patients have a negative relationship between LF and mean BP. In EH-2 women, positive relationships between LF and pulse BP, HF and systolic and pulse pressure were found. In patients with EH-1, there is a negative relationship between VLF and CMV, and CSI with LVMI. In patients with GB-2, there are positive correlations between SDNN and EDV, LF and EDV, SV and CMV, as well as LF/HF with EDV, SV and CMV, CSI and CVI with PSS. Conclusions. In women of the EH-1 group, there is an imbalance in the activity of the autonomic nervous system (ANS), while the activity of the sympathetic and parasympathetic sections of the ANS in patients with EH-2 is strictly balanced.

About the Authors

B. I. Kuznik
Chita State Medical Academy; Innovative Clinic Academy of Health
Russian Federation

Boris I. Kuznik, MD, PhD, DSc, Professor, Department of Normal Physiology

39A Gorkiy street, Chita, 672090
Phone: 8(3022)32–16–23



Y. N. Smolyakov
Chita State Medical Academy; Innovative Clinic Academy of Health
Russian Federation

Yuri N. Smolyakov, PhD, MD, Head, Department of Medical Physics and Informatics

Chita



E. S. Guseva
Innovative Clinic Academy of Health
Russian Federation

Ekaterina S. Guseva, PhD, MD, Deputy Director for Clinical Expert and Organizational-Methodical Work

Chita



S. O. Davydov
Chita State Medical Academy; Innovative Clinic Academy of Health
Russian Federation

Sergey O. Davydov, PhD, MD, General Director of the Innovation Clinic “Academy of Health”

Chita



N. N. Tsybikov
Chita State Medical Academy
Russian Federation

Namzhil N. Tsybikov, PhD, MD, Professor, Head, Department of Pathological Physiology

Chita



References

1. Kolasińska-Kloch W, Furgała A, Banach T, Laskiewicz J, Thor PJ. Circadian heart rate variability in patients with primary arterial hypertension. Przegl Lek. 2002;59(9):752–755.

2. Di Raimondo D, Miceli G, Casuccio A, Tuttolomondo A, Buttà C, Zappulla V et al. Does sympathetic overactivation feature all hypertensives? Differences of sympathovagal balance according to night/day blood pressure ratio in patients with essential hypertension. Hypertens Res. 2016;39(6):440–448. doi:10.1038/hr.2016.6

3. Pavithran P, Nandeesha H, Sathiyapriya V, Bobby Z, Madanmohan T. Short-term heart variability and oxidative stress in newly diagnosed essential hypertension. Clin Exp Hypertens. 2008;30(7):486–496. doi:10.1080/10641960802251875

4. de Andrade PE, do Amaral JAT, Paiva LDS, Adami F, Raimudo JZ, Valenti VE et al. Reduction of heart rate variability in hypertensive elderly. Blood Press. 2017;26(6):350–358. doi:10.1080/08037051.2017.1354285

5. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84(2):482–492. doi:10.1161/01.CIR.84.2.482

6. Yue WW, Yin J, Chen B, Zhang X, Wang G, Li H et al. Analysis of heart rate variability in masked hypertension. Cell Biochem Biophys. 2014;70(1):201–204. doi:10.1007/s12013014-9882-y

7. Mussalo H, Vanninen E, Ikäheimo R, Laitinen T, Laakso M, Länsimies E et al. Heart rate variability and its determinants in patients with severe or mild essential hypertension. Clin Physiol. 2001;21(5):594–604. doi:10.1046/j.1365-2281.2001.00359.x

8. Smolyakov YN, Kuznik BI, Guseva ES, Davydov SO. Heart rate variability in women suffering from hypertension under the influence of regular moderate physical activity. Sistemnye Gipertenzii = Systemic Hypertension. 2019;16(4):61–64. doi:10.26442/2075082X.2019.4.190636. In Russian.

9. Banach T, Kolasińska-Kloch W, Furgała A, Laskiewicz J. The effect of the year angiotensin-converting enzyme inhibitors (ACE I) intake on circadian heart rate variability in patients with primary hypertension. Folia Med Cracov. 2001;42(3):129–140.

10. Bilge AK, Atilgan D, Tükek T, Ozcan M, Ozben B, Koylan N et al. Effects of amlodipine and fosinopril on heart rate variability and left ventricular mass in mild-to-moderate essential hypertension. Int J Clin Pract. 2005;59(3):306–310. doi:10.1111/j.1742-1241.2005.00464.x

11. Kaftan AH, Kaftan O. QT intervals and heart rate variability in hypertensive patient. Jpn Heart J. 2000;41(2):173–182. doi:10.1536/jhj.41.173

12. Ni H, Wang Y, Xu G, Shao Z, Zhang W, Zhou X. Multiscale fine-grained heart rate variability analysis for recognizing the severity of hypertension. Comput Math Methods Med. 2019;2019:4936179. doi:10.1155/2019/4936179

13. Dong Y, Cui Y, Zhang H, Liu Z, Wang J. Orthostatic change in systolic blood pressure associated with cold pressor reflection and heart rate variability in the elderly. Clin Exp Hypertens. 2020;42(5):409–419. doi:10.1080/10641963.2019.1676773

14. Pinheiro N, Couceiro R, Henriques J, Muehlsteff J, Quintal I, Goncalves L et al. Can PPG be used for HRV analysis? Clinical Trial. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016: 2945–2949. doi:10.1109/EMBC.2016.7591347

15. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Frontiers in public health. 2017;5:258. doi:10.3389/fpubh.2017.00258

16. Core Team R. A language and environment for statistical computing. Foundation for Statistical Computing, Vienna, Austria. 2019. [Электронный ресурс]. — URL: https://www.R-project.org

17. Davydov SO, Kuznik BI, Stepanov AV, Morar NV, Ayushiev OD. The effect of kinesitherapy on the content of the “hormone of youth” irisin in healthy and patients with coronary heart disease. Vestnik Vosstanovitel’noj Meditsiny = Bulletin of Regenerative Medicine. 2015;(5):91–98. In Russian.

18. Guseva ES, Davydov SO, Kuznik BI, Smolyakov YN, Stepanov AV, Fayn IV et al. The role of differentiating growth factor 11 (GDF11) in the regulation of lipid metabolism and cardiohemodynamic functions in patients with hypertension with moderate physical exertion. Russian Journal of Cardiology. 2018;(4):93–98. doi:10.15829/1560-4071-2018-4-93-98. In Russian.

19. Kuznik BI, Davydov SO, Stepanov AV, Morar NV. The effect of kinesitherapeutic procedures on the content of irisin in women with diseases of the cardiovascular system, depending on body weight and hormonal status. Patologicheskaja Fiziologija i Eksperimental’naja Terapija = Pathological Physiology and Experimental Therapy. 2016;60(4):47–51. doi:10.25557/00312991.2016.04.47-51. In Russian.

20. Kuznik BI, Davydov SO, Smolyakov YN, Stepanov AV, Guseva ES, Fine IV, Khavinson VH. The role of “youth and old age” proteins in the pathogenesis of hypertension. Uspehi Gerontologii = The Successes of Gerontology. 2018;31(3):362–367. In Russian.

21. Stepanov AV, Davydov SO, Kuznik BI, Guseva ES, Smolyakov YN. The influence of moderate physical exercise on concentration of junctional adhesion molecules JAM-A, estrogen, progesterone, prolactin and lipid metabolism in women with essential hypertension. Zabajkal’skij Meditsinskij Vestnik = Transbaikal Medical Bulletin. 2019;(4):122–127. In Russian.

22. Lee CJ, Kim JY, Shim E, Hong SH, Lee M, Jeon JY et al. The effects of diet alone or in combination with exercise in patients with prehypertension and hypertension: a randomized controlled trial. Korean Circ J. 2018;8(7):637–651. doi:10.4070/kcj.2017.0349

23. Kotovskaya YV, Tkacheva ON, Runikhina NK, Luzina AV. Physical activity as a means of preventing cardiovascular disease in elderly patients. Doctor.Ru. 2019;(2):19–22. doi:10.31550/17272378-2019-157-2-19-22. In Russian.

24. Jensen MT, Suadicani P, Hein HO, Gyntelberg F. Elevated resting heart rate, physical fitness and all-cause mortality: a 16-year followup in the Copenhagen Male Study. Heart. 2013;99(12):882–887. doi:10.1136/heartjnl-2012-3033

25. Stránská Z, Svačina Š. Myokines — muscle tissue hormones. Vnitr Lek. 2015;61(4):365–368.

26. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC et al. A PGC 1-alpha-dependent myokine that drives brownfat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463–468. doi:10.1038/nature10777

27. Kuznik BI, Davydov SO, Stepanov AV, Morar NV. Change in the concentration of irisin in the blood of hypertensive patients after exercise. Kardiologiia. 2017;57(4):77–78. doi:10.18565/cardio.2017.4.77–78. In Russian.

28. Kuznik BI, Davydov SO, Roitman E, Smolyakov YN, Guseva E, Stepanov AV et al. Protein GDF15 and the state of cardiodynamic functions in women with hypertension. Vrach = Physician. 2019;30(1):3–9. doi:10.29296/25877305-2019-01-01. In Russian.

29. Rana KS, Arif M, Hill EJ, Brown JE. Plasma irisin levels predict telomere length in healthy adults. Age. 2014;36(2):9951001. doi:10.1007/s11357-014-9620-9

30. Wiktorczyk P. Influence of physical activity on cognitive function. Ann Acad Med Stetin. 2013;1:124–130.

31. Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D et al Exercise induces hippocampal BDNF through a PGC-1α/FNDC 5 pathway. Cell Metab. 2013;18(5):649–659. doi:10.1016/j.cmet.2013.09.008

32. Zhang Y, Song H, Zhang Y, Wu F, Mu Q, Jiang M et al. Irisin inhibits atherosclerosis by promoting endothelial proliferation through microRNA126–5p. J Am Heart Assoc. 2016;5(9): e004031. doi:10.1161/JAHA.116.004031

33. Colaianni G, Cuscito C, Mongelli T, New MI, Zaidi M, Cinti S et al. The myokineirisin increases cortical bone mass. Proc Natl Acad Sci. 2015;112(39):12157–12162. doi:10.1073/pnas.1516622112

34. Liu ZX, Ji HH, Yao MP, Wang L, Wang Y, Zhou P et al. Serum Metrnl is associated with the presence and severity of coronary artery disease. J Cell Mol Med. 2019;23(1):271–280. doi:10.1111/jcmm.13915

35. Roberts LD, Boström P, O’Sullivan JF, Schinzel RT, Lewis GD, Dejam A et al. β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab. 2014;19(1):96–108. doi:10.1016/j.cmet.2013.12.003

36. Schnyder S, Handschin C. Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone. 2015;80:115–125. doi:10.1016/j.bone.2015.02.008


Review

For citations:


Kuznik B.I., Smolyakov Y.N., Guseva E.S., Davydov S.O., Tsybikov N.N. Correlation between heart rate variability, blood pressure and heart function in patients with essential hypertension depending on the type of therapy. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2020;26(5):581-589. (In Russ.) https://doi.org/10.18705/1607-419X-2020-26-5-581-589

Views: 1646


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)