Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

Mechanisms of beta-blockers antihypertensive action

https://doi.org/10.18705/1607-419X-2021-27-3-291-299

Abstract

This article presents an analysis of data on the mechanisms of antihypertensive effect of β-adrenergic receptor blockers. The article describes the effectiveness of cardiotropic action of drugs to reduce high blood pressure (BP) with short-term and long-term action of compounds, the effect of blockers on the activity of plasma renin. The influence of β-blockers on the central mechanisms of blood circulation regulation is considered. Information on the effect of β-blockers on myogenic mechanisms of vascular tone regulation is presented. The possibilities of blockade of β-adrenergic receptors of endothelium-dependent hyperpolarization of smooth muscles of resistive arteries, violation of the NO-cGMP pathway and blockade of Ca2+ channel currents as factors providing expansion of resistive vessels and reduction of high BP are analyzed.

About the Authors

E. V. Kuleshova
Almazov National Medical Research Centre
Russian Federation

Elvira V. Kuleshova, MD, PhD, DSc, Chief  Researcher, Department of Ischemic Heart Disease, Institute of Cardiovascular Diseases

St Petersburg



N. V. Kuzmenko
Almazov National Medical Research Centre; Pavlov University
Russian Federation

Natalia V. Kuzmenko, PhD in Biology, Senior Researcher, Department of Experimental Physiology and Pharmacology, Preclinical and Translational Research Centre, Almazov National Medical Research Centre, Senior Researcher of Blood Circulation Biophysics  Laboratory, Research Educational Institute of Biomedicine, Pavlov University

15 Parkhomenko avenue, St Petersburg, 194156



M. G. Pliss
Almazov National Medical Research Centre; Pavlov University
Russian Federation

Mikhail G. Pliss, MD, PhD, Head, Department of Experimental Physiology and Pharmacology, Preclinical and Translational Research Centre, Almazov National Medical Research Centre, Head, Biophysics of Blood Circulation Laboratory, Research Educational Institute of Biomedicine, Pavlov University

St Petersburg



V. A. Tsyrlin
Almazov National Medical Research Centre
Russian Federation

Vitaliy A. Tsyrlin, MD, PhD, DSc, Professor, Chief Researcher, Department of Experimental Physiology and Pharmacology of Preclinical and Translational Research Centre

St Petersburg



References

1. Ahlquist RP. A study of the adrenotropic receptors. Am J Physiol. 1948;153(3):586–600. doi:10.1152/ajplegacy

2. Prichard BN, Gillam PM. Use of propranolol (inderal) in treatment of hypertension. Br Med J. 1964;2(5411):725–727. doi:10.1136/bmj.2.5411.725

3. Valdman AV, Almazov VA, Tsyrlin VA. Clinical neuropharmacology of hypotensive agents. M.: Medicine, 1978. 271 p. In Russian.

4. Perepech NB, Shurygina VD. The place of β-blockers in the pharmacotherapy of arterial hypertension. Literature review. Vestnik SPbGU. 2014;11(1):76–86. In Russian.

5. Shlyakhto EV, Konradi AO, Tsyrlin VA. Autonomic nervous system and arterial hypertension. St Petersburg: Medical Publishing house, 2008. 312 p. In Russian.

6. Almazov VA, Tsyrlin VA, Shlyakhto EV, Maslova NP. Antihypertensive drugs. St Petersburg: SPbGMU publishing house, 1997. 232 p. In Russian.

7. Franciosa JA, Freis ED. Normal cardiac output during β blockade with timolol in hypertensive patients. Clin Pharmacol Ther. 1975;18(2):158–164.

8. Colfer HT, Cottier C, Sanchez R, Julius S. Role of cardiac factors in the initial hypotensive action by β-adrenoreceptor blocking agents. Hypertension. 1984;6(2 Pt 1):145–151.

9. Sybertz EJ, Watkins RW. Preclinical pharmacologic properties of dilevalol, an antihypertensive agent possessing selective β-2 agonist-mediated vasodilation and β antagonism. Am J Cardiol. 1989;63(1):31–61. doi:10.1016/0002-9149(89)90120-3

10. Carter BL. Labetolol. Drug Intell. Clin Pharm. 1983;17(10):704–712.

11. Kanto JH. Current status of laβlol, the first alpha- and β-blocking agent. Int J Clin Pharmacol Ther Toxicol. 1985;23 (11):617–628.

12. Louis WL, McNei JJ, Drummer OH. Pharmacology of combined alpha-β-blockade. Drugs. 1984;28(Suppl 2):16–34. doi:10.2165/00003495-198400282-00003

13. Sybertz EJ, Baum T, Pula KK, Nelson S, Eynon E, Sabin S. Studies on the mechanism of the acute antihypertensive and vasodilator actions of several β adrenoceptor. J Cardiovasc Pharmacol. 1982;4(5):749–758. doi:1097/00005344-198209000-00009

14. MacCarthy EP, Bloomfield SS. Laβlol: a review of its pharmacology, pharmacokinetics, clinical uses and adverse effects. Pharmacotherapy. 1983;3(4):193–219. doi:10.1002/j.1875–9114.1983.tb03252

15. Franciosa JA, Freis ED. Normal cardiac output during β blockade with timolol in hypertensive patients. Clin Pharmacol Ther. 1975;18(2):158–164. doi:10.1002/cpt1975182158

16. Lund-Johansen P, Ohm OJ. Haemodynamic long-term effects of metoprolol at rest and during exercise in essential hypertension. Br J Clin Pharmacol. 1977;4(2):147–151. doi:10.1111/j.1365–2125

17. Morgan T, Snowden R, Butcher L. Effect of carvedilol and metoprolol on blood pressure, blood flow, and vascular resistance. J Cardiovasc Pharmacol. 1987;11:124–129.

18. Trimarco B, Lembo G, DeLuca N, Ricciardelli B, Rosiello G, Volpe M et al. Long-term reduction of peripheral resistance with celiprolol and effects on left ventricular mass. J Int Med Res. 1988;16(1):62A-72A.

19. Prisant LM, Carr AA, Desnoyers M, Westcott RJ, Zinny MA, O’Donnell DM et al. Multicenter evaluation of the hemodynamic effects of bisoprolol in patients with mild to moderate hypertension. J Clin Pharmacol. 1990;30(12):1096–1111. doi:10.1002/j.1552–4604

20. Trimarco B, Lembo G, DeLuca N, Ricciardelli B, Rosiello G, Volpe M et al. Long-term reduction of peripheral resistance with celiprolol and effects on left ventricular mass. J Int Med Res. 1988;16(1):62A-72A.

21. Prisant LM, Carr AA, Desnoyers M, Westcott RJ, Zinny MA, O’Donnell DM et al. Multicenter evaluation of the hemodynamic effects of bisoprolol in patients with mild to moderate hypertension. J Clin Pharmacol. 1990;30(12):1096–1111. doi:10.1002/j.1552-4604

22. Pedley T. The fluid mechanics of large blood vessels. M.: Mir, 1983. 400 p. In Russian.

23. Vasyuk YA, Ivanova SV, Shkolnik EL, Kotovskaya YuV, Mishin VA, Oleyni kov VE et al. The agreed opinion of russian experts on the assessment of arterial stiffness in clinical practice. Kardiovaskulyarnaya Terapiya i Profilaktika = Cardiovascular Therapy and Prevention. 2016;15(2). doi.org/10.15829/1728-8800-2016-2-4-19. In Russian.

24. Xie H, Luo G, Zheng Y, Peng F, Xie L. A meta-analytical comparison of atenolol with angiotensin-converting enzyme inhibitors on arterial stiffness, peripheral blood pressure and heart rate in hypertensive patients. Clin Exp Hypertens. 2017;39(5):421– 426. doi:10.1080/10641963.2016.1267188

25. Niu W, Qi Y. A meta-analysis of randomized controlled trials assessing the impact of β-blockers on arterial stiffness, peripheral blood pressure and heart rate. Int J Cardiol. 2016;218:109–117. doi:10.1016/j.ijcard.2016.05.017

26. Stokes GS, Graham RM, Weber MA. The role of renin in the antihypertensive action of β adrenoreceptor blocking agents. Drugs. 1976;11(1):150–156. doi:10.2165/00003495-197600111-00031

27. Stumpe KO, Kolloch R, Vetter H, Gramann W, Krück F, Ressel C et al. Acute and long-term studies of the mechanisms of action of β-blocking drugs in lowering blood pressure. Am J Med. 1976;60(6):853–865. doi:10.1016/0002-9343(76)90905-0

28. Saruta T, Eguchi T, Nakamura R, Misumi J, Kondo K, Oka M. Mechanism of renin inhibition by β adrenergic blocking agents. Effects of dl-, d-, l-propranolol and pindolol on renin release. Jap Heart J. 1980;21(1):103–109. doi:10.1536/ihj.21.103

29. Vaile JC, Fletcher J, Al-Ani M, Ross HF, Littler WA, Coote JH et al. Use of opposing reflex stimuli and heart rate variability to examine the effects of lipophilic and hydrophilic β-blockers on human cardiac vagal control. Clin Sci (Lond). 1999;97(5):585–593.

30. Wallin BG, Sundlöf G, Strömgren E, Aberg H. Sympathetic outflow to muscles during treatment of hypertension with metoprolol. Hypertension. 1984;6(4):557–562. doi:10.1161/01.hyp.6.4.557

31. Tank J, Diedrich A, Schroeder C, Stoffels M, Franke G, Sharma AM et al. Limited effect of systemic β-blockade on sympa thetic outflow. J Hyperten. 2001;38(6):1377–1381. doi:10.1161/hy1201.096120

32. Burns J, David AS, Mary G, Mackintosh A, Stephen F, Ball G et al. Arterial pressure lowering effect of chronic atenolol therapy in hypertension and vasoconstrictor sympathetic drive. Hypertension. 2004;44(4):454–458. doi:10.1161/01.HYP.0000141411.94596

33. Coleman HA, Tare M, Parkington HC. Endothelial potassium channels, endothelium-dependent hyperpolarization and the regulation of vascular tone in health and disease. Clin Exp Pharmacol Physiol. 2004;31(9):641–649. doi:10.1111/j.1440-1681

34. Dora KA, Gallagher NT, McNeish A, Garland CJ. Modulation of endothelial cell KCa3.1 channels during endotheliumderived hyperpolarizing factor signaling in mesenteric resistance arteries. Circ Res. 2008;102(10):1247–1255. doi:10.1161/CIRCRESAHA.108.172379

35. Félétou M. Calcium-activated potassium channels and endothelial dysfunction: therapeutic options? Br J Pharmacol. 2009;156(4):545–562. doi:10.1111/j.1476-5381

36. Garland CJ, Dora KA. EDH: endothelium-dependent hyperpolarization and microvascular signalling. Acta Physiol. (Oxf). 2017;219(1):152–161. doi:10.1111/apha.12649

37. Harhun MI, Pucovský V, Povstyan OV, Gordienko DV, Bolton TB. Interstitial cells in the vasculature. J Cell Mol Med. 2005;9(2):232–243. doi:10.1111/j.1582-4934

38. Yarova PL, Smirnov SV, Dora KA, Garland CJ. β1-Adrenoceptor associated dilatation in resistance arteries. Br J Pharmacol. 2013;169(4):875–886. doi:10.1111/bph.12160

39. Cuesta AM, Albiñana V, Gallardo-Vara E, Recio-Poveda L, de Rojas PI, de Las Heras KVG et al. The β2-adrenergic receptor antagonist ICI-118,551 blocks the constitutively activated HIF signalling in hemangioblastomas from von Hippel-Lindau disease. Sci Rep. 2019;9(1):10062. doi:10.1038/s41598-019-46448-6

40. Yarova PL, Smirnov SV, Dora KA, Garland CJ. β1-Adrenoceptor stimulation suppresses endothelial IK(Ca)-channel hyperpolarization and associated dilatation in resistance arteries. Br J Pharmacol. 2013;169(4):875–886. doi:10.1111/bph.12160

41. Setoguchi M, Ohya Y, Abe I, Fujishima M. Inhibitory action of betaxolol, a β-1-selective adrenoceptor antagonist, on voltage-dependent calcium channels in guinea-pig artery and vein. Br J Pharmacol. 1995;115(1):198–202. doi:10.1111/j.1476-5381

42. Yu DY, Su EN, Cringle SJ, Alder VA, Yu PK, DeSantis L. Systemic and ocular vascular roles of the antiglaucoma agents β-adrenergic antagonists and Ca2+ entry blockers. Surv Ophthalmol. 1999;43(1): S 214–S 222. doi:10.1016/s0039-6257(99)00042-9

43. Dong Y, Ishikawa H, Wu Y, Shimizu K, Goseki T, Yoshitomi T. Effect and mechanism of betaxolol and timolol on vascular relaxation in isolated rabbit ciliary artery. Jap J Ophthalmol. 2006;50(6):504–508. doi:10.1007/s10384-006-0377-2

44. Priviero FB, Teixeira CE, Toque HA, Claudino MA, Webb RC, De Nucci G et al. Vasorelaxing effects of propranolol in rat aorta and mesenteric artery: a role for nitric oxide and calcium entry blockade. Clin Exp Pharmacol Physiol. 2006;33(5–6):448– 455. doi:10.1111/j.1440-1681


Supplementary files

Review

For citations:


Kuleshova E.V., Kuzmenko N.V., Pliss M.G., Tsyrlin V.A. Mechanisms of beta-blockers antihypertensive action. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2021;27(3):291-299. (In Russ.) https://doi.org/10.18705/1607-419X-2021-27-3-291-299

Views: 2163


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)